scholarly journals The number of additive triples in subsets of abelian groups

2016 ◽  
Vol 160 (3) ◽  
pp. 495-512 ◽  
Author(s):  
WOJCIECH SAMOTIJ ◽  
BENNY SUDAKOV

AbstractA set of elements of a finite abelian group is called sum-free if it contains no Schur triple, i.e., no triple of elementsx,y,zwithx+y=z. The study of how large the largest sum-free subset of a given abelian group is had started more than thirty years before it was finally resolved by Green and Ruzsa a decade ago. We address the following more general question. Suppose that a setAof elements of an abelian groupGhas cardinalitya. How many Schur triples mustAcontain? Moreover, which sets ofaelements ofGhave the smallest number of Schur triples? In this paper, we answer these questions for various groupsGand ranges ofa.

2009 ◽  
Vol 05 (06) ◽  
pp. 953-971 ◽  
Author(s):  
BÉLA BAJNOK

A subset A of a given finite abelian group G is called (k,l)-sum-free if the sum of k (not necessarily distinct) elements of A does not equal the sum of l (not necessarily distinct) elements of A. We are interested in finding the maximum size λk,l(G) of a (k,l)-sum-free subset in G. A (2,1)-sum-free set is simply called a sum-free set. The maximum size of a sum-free set in the cyclic group ℤn was found almost 40 years ago by Diamanda and Yap; the general case for arbitrary finite abelian groups was recently settled by Green and Ruzsa. Here we find the value of λ3,1(ℤn). More generally, a recent paper by Hamidoune and Plagne examines (k,l)-sum-free sets in G when k - l and the order of G are relatively prime; we extend their results to see what happens without this assumption.


2018 ◽  
Vol 99 (2) ◽  
pp. 184-194
Author(s):  
BÉLA BAJNOK ◽  
RYAN MATZKE

A subset$A$of a finite abelian group$G$is called$(k,l)$-sum-free if the sum of$k$(not necessarily distinct) elements of$A$never equals the sum of$l$(not necessarily distinct) elements of $A$. We find an explicit formula for the maximum size of a$(k,l)$-sum-free subset in$G$for all$k$and$l$in the case when$G$is cyclic by proving that it suffices to consider$(k,l)$-sum-free intervals in subgroups of $G$. This simplifies and extends earlier results by Hamidoune and Plagne [‘A new critical pair theorem applied to sum-free sets in abelian groups’,Comment. Math. Helv. 79(1) (2004), 183–207] and Bajnok [‘On the maximum size of a$(k,l)$-sum-free subset of an abelian group’,Int. J. Number Theory 5(6) (2009), 953–971].


Author(s):  
Bodan Arsovski

Abstract Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.


1981 ◽  
Vol 90 (2) ◽  
pp. 273-278 ◽  
Author(s):  
C. T. Stretch

The object of this paper is to prove that for a finite abelian group G the natural map is injective, where Â(G) is the completion of the Burnside ring of G and σ0(BG) is the stable cohomotopy of the classifying space BG of G. The map â is detected by means of an M U* exponential characteristic class for permutation representations constructed in (11). The result is a generalization of a theorem of Laitinen (4) which treats elementary abelian groups using ordinary cohomology. One interesting feature of the present proof is that it makes explicit use of the universality of the formal group law of M U*. It also involves a computation of M U*(BG) in terms of the formal group law. This may be of independent interest. Since writing the paper the author has discovered that M U*(BG) has previously been calculated by Land-weber(5).


2011 ◽  
Vol 12 (01n02) ◽  
pp. 125-135 ◽  
Author(s):  
ABBY GAIL MASK ◽  
JONI SCHNEIDER ◽  
XINGDE JIA

Cayley digraphs of finite abelian groups are often used to model communication networks. Because of their applications, extremal Cayley digraphs have been studied extensively in recent years. Given any positive integers d and k. Let m*(d, k) denote the largest positive integer m such that there exists an m-element finite abelian group Γ and a k-element subset A of Γ such that diam ( Cay (Γ, A)) ≤ d, where diam ( Cay (Γ, A)) denotes the diameter of the Cayley digraph Cay (Γ, A) of Γ generated by A. Similarly, let m(d, k) denote the largest positive integer m such that there exists a k-element set A of integers with diam (ℤm, A)) ≤ d. In this paper, we prove, among other results, that [Formula: see text] for all d ≥ 1 and k ≥ 1. This means that the finite abelian group whose Cayley digraph is optimal with respect to its diameter and degree can be a cyclic group.


2019 ◽  
Vol 150 (4) ◽  
pp. 1937-1964 ◽  
Author(s):  
Hua-Lin Huang ◽  
Zheyan Wan ◽  
Yu Ye

AbstractWe provide explicit and unified formulas for the cocycles of all degrees on the normalized bar resolutions of finite abelian groups. This is achieved by constructing a chain map from the normalized bar resolution to a Koszul-like resolution for any given finite abelian group. With a help of the obtained cocycle formulas, we determine all the braided linear Gr-categories and compute the Dijkgraaf–Witten Invariants of the n-torus for all n.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1537 ◽  
Author(s):  
Lingling Han ◽  
Xiuyun Guo

In this paper, we mainly count the number of subgroup chains of a finite nilpotent group. We derive a recursive formula that reduces the counting problem to that of finite p-groups. As applications of our main result, the classification problem of distinct fuzzy subgroups of finite abelian groups is reduced to that of finite abelian p-groups. In particular, an explicit recursive formula for the number of distinct fuzzy subgroups of a finite abelian group whose Sylow subgroups are cyclic groups or elementary abelian groups is given.


2016 ◽  
Vol 12 (06) ◽  
pp. 1509-1518 ◽  
Author(s):  
Yongke Qu ◽  
Dongchun Han

Let [Formula: see text] be a finite abelian group of order [Formula: see text], and [Formula: see text] be the smallest prime dividing [Formula: see text]. Let [Formula: see text] be a sequence over [Formula: see text]. We say that [Formula: see text] is regular if for every proper subgroup [Formula: see text], [Formula: see text] contains at most [Formula: see text] terms from [Formula: see text]. Let [Formula: see text] be the smallest integer [Formula: see text] such that every regular sequence [Formula: see text] over [Formula: see text] of length [Formula: see text] forms an additive basis of [Formula: see text], i.e. [Formula: see text]. Recently, [Formula: see text] was determined for many abelian groups. In this paper, we determined [Formula: see text] for more abelian groups and characterize the structure of the regular sequence [Formula: see text] over [Formula: see text] of length [Formula: see text] and [Formula: see text].


2015 ◽  
Vol 92 (1) ◽  
pp. 24-31
Author(s):  
ZHENHUA QU

Let$G$be a finite abelian group and$A\subseteq G$. For$n\in G$, denote by$r_{A}(n)$the number of ordered pairs$(a_{1},a_{2})\in A^{2}$such that$a_{1}+a_{2}=n$. Among other things, we prove that for any odd number$t\geq 3$, it is not possible to partition$G$into$t$disjoint sets$A_{1},A_{2},\dots ,A_{t}$with$r_{A_{1}}=r_{A_{2}}=\cdots =r_{A_{t}}$.


2017 ◽  
Vol 16 (05) ◽  
pp. 1750086
Author(s):  
Mohammad Naghshinehfard

We compute the autocentral and autoderived series of a finite abelian group [Formula: see text] corresponding to several groups of automorphisms [Formula: see text]. As a result, we determine the autonilpotency and autosolvability of [Formula: see text] with respect to [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document