scholarly journals Transversality of smooth definable maps in O-minimal structures

2019 ◽  
Vol 168 (3) ◽  
pp. 519-533
Author(s):  
NHAN NGUYEN ◽  
SAURABH TRIVEDI

AbstractWe present a definable smooth version of the Thom transversality theorem. We show further that the set of non-transverse definable smooth maps is nowhere dense in the definable smooth topology. Finally, we prove a definable version of a theorem of Trotman which says that the Whitney (a)-regularity of a stratification is necessary and sufficient for the stability of transversality.

2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


1989 ◽  
Vol 12 (4) ◽  
pp. 571-585
Author(s):  
E. Fachini ◽  
A. Maggiolo Schettini ◽  
G. Resta ◽  
D. Sangiorgi

We prove that the classes of languages accepted by systolic automata over t-ary trees (t-STA) are always either equal or incomparable if one varies t. We introduce systolic tree automata with base (T(b)-STA), a subclass of STA with interesting properties of modularity, and we give a necessary and sufficient condition for the equivalence between a T(b)-STA and a t-STA, for a given base b. Finally, we show that the stability problem for T(b)-ST A is decidible.


Author(s):  
Rama K. Yedavalli

This paper revisits the problem of checking the robust stability of matrix families generated by ‘Unstructured Convex Combinations’ of user supplied or externally supplied Vertex Matrices. A previous solution given by the author for this problem involved complete dependence on the quantitative (eigenvalue information) of a set of special matrices labeled the Kronecker Nonsingularity (KN) matrices. In this solution, the ‘convexity’ property is not explicit and transparent, to the extent that, unfortunately, the accuracy of the solution itself is being questioned and not embraced by the peer community. To erase this unforunate and unwarranted image of this author (in this specific problem) in the minds of the peer community, in this paper, the author treads a new path to find a solution that brings out the convexity property in an explicit and understandable way. In the new solution presented in this paper, we combine the qualitative (sign) as well as quantitative (magnitude) information of these KN matrices and present a vertex solution in which the convexity property of the solution is transparent making it more elegant and accepatble to the peer community, than the previous solution. The new solution clearly underscores the importance of using the sign structure of a matrix in assessing the stability of a matrix. This new solution is made possible by the new insight provided by the qualitative (sign) stability/instability derived from ecological principles. Examples are given which clearly demonstrate effectiveness of the new, convexity based algorithm. It is hoped that this new solution will be embraced by the peer community.


1966 ◽  
Vol 21 (11) ◽  
pp. 1953-1959 ◽  
Author(s):  
R. Saison ◽  
H. K. Wimmel

A check is made of a stabilization theorem of ROSENBLUTH and KRALL (Phys. Fluids 8, 1004 [1965]) according to which an inhomogeneous plasma in a minimum-B field (β ≪ 1) should be stable with respect to electrostatic drift instabilities when the particle distribution functions satisfy a condition given by TAYLOR, i. e. when f0 = f(W, μ) and ∂f/∂W < 0 Although the dispersion relation of ROSENBLUTH and KRALL is confirmed to first order in the gyroradii and in ε ≡ d ln B/dx z the stabilization theorem is refuted, as also is the validity of the stability criterion used by ROSEN-BLUTH and KRALL, ⟨j·E⟩ ≧ 0 for all real ω. In the case ωpi ≫ | Ωi | equilibria are given which satisfy the condition of TAYLOR and are nevertheless unstable. For instability it is necessary to have a non-monotonic ν ⊥ distribution; the instabilities involved are thus loss-cone unstable drift waves. In the spatially homogeneous limiting case the instability persists as a pure loss cone instability with Re[ω] =0. A necessary and sufficient condition for stability is D (ω =∞, k,…) ≦ k2 for all k, the dispersion relation being written in the form D (ω, k, K,...) = k2+K2. In the case ωpi ≪ | Ωi | adherence to the condition given by TAYLOR guarantees stability.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150018
Author(s):  
Wentao Huang ◽  
Chengcheng Cao ◽  
Dongping He

In this article, the complex dynamic behavior of a nonlinear aeroelastic airfoil model with cubic nonlinear pitching stiffness is investigated by applying a theoretical method and numerical simulation method. First, through calculating the Jacobian of the nonlinear system at equilibrium, we obtain necessary and sufficient conditions when this system has two classes of degenerated equilibria. They are described as: (1) one pair of purely imaginary roots and one pair of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary roots under nonresonant conditions. Then, with the aid of center manifold and normal form theories, we not only derive the stability conditions of the initial and nonzero equilibria, but also get the explicit expressions of the critical bifurcation lines resulting in static bifurcation and Hopf bifurcation. Specifically, quasi-periodic motions on 2D and 3D tori are found in the neighborhoods of the initial and nonzero equilibria under certain parameter conditions. Finally, the numerical simulations performed by the fourth-order Runge–Kutta method provide a good agreement with the results of theoretical analysis.


1994 ◽  
Vol 116 (3) ◽  
pp. 419-428 ◽  
Author(s):  
J. E. Colgate

This paper presents both theoretical and experimental studies of the stability of dynamic interaction between a feedback controlled manipulator and a passive environment. Necessary and sufficient conditions for “coupled stability”—the stability of a linear, time-invariant n-port (e.g., a robot, linearized about an operating point) coupled to a passive, but otherwise arbitrary, environment—are presented. The problem of assessing coupled stability for a physical system (continuous time) with a discrete time controller is then addressed. It is demonstrated that such a system may exhibit the coupled stability property; however, analytical, or even inexpensive numerical conditions are difficult to obtain. Therefore, an approximate condition, based on easily computed multivariable Nyquist plots, is developed. This condition is used to analyze two controllers implemented on a two-link, direct drive robot. An impedance controller demonstrates that a feedback controlled manipulator may satisfy the coupled stability property. A LQG/LTR controller illustrates specific consequences of failure to meet the coupled stability criterion; it also illustrates how coupled instability may arise in the absence of force feedback. Two experimental procedures—measurement of endpoint admittance and interaction with springs and masses—are introduced and used to evaluate the above controllers. Theoretical and experimental results are compared.


1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.


2008 ◽  
Vol 21 (3) ◽  
pp. 309-325 ◽  
Author(s):  
Yury Farkov

This paper gives a review of multiresolution analysis and compactly sup- ported orthogonal wavelets on Vilenkin groups. The Strang-Fix condition, the partition of unity property, the linear independence, the stability, and the orthonormality of 'integer shifts' of the corresponding refinable functions are considered. Necessary and sufficient conditions are given for refinable functions to generate a multiresolution analysis in the L2-spaces on Vilenkin groups. Several examples are provided to illustrate these results. .


Sign in / Sign up

Export Citation Format

Share Document