scholarly journals A min-max characterization of Zoll Riemannian metrics

Author(s):  
MARCO MAZZUCCHELLI ◽  
STEFAN SUHR

Abstract We characterise the Zoll Riemannian metrics on a given simply connected spin closed manifold as those Riemannian metrics for which two suitable min-max values in a finite dimensional loop space coincide. We also show that on odd dimensional Riemannian spheres, when certain pairs of min-max values in the loop space coincide, every point lies on a closed geodesic.

1999 ◽  
Vol 6 (4) ◽  
pp. 323-334
Author(s):  
A. Kharazishvili

Abstract We give a characterization of all those groups of isometric transformations of a finite-dimensional Euclidean space, for which an analogue of the classical Vitali theorem [Sul problema della misura dei gruppi di punti di una retta, 1905] holds true. This characterization is formulated in purely geometrical terms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuri Berest ◽  
Ajay C. Ramadoss ◽  
Yining Zhang

Abstract Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$ -equivariant homology $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ of the free loop space of X preserves the Hodge decomposition of $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ , making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7].


2017 ◽  
Vol 16 (10) ◽  
pp. 1750200 ◽  
Author(s):  
László Székelyhidi ◽  
Bettina Wilkens

In 2004, a counterexample was given for a 1965 result of R. J. Elliott claiming that discrete spectral synthesis holds on every Abelian group. Since then the investigation of discrete spectral analysis and synthesis has gained traction. Characterizations of the Abelian groups that possess spectral analysis and spectral synthesis, respectively, were published in 2005. A characterization of the varieties on discrete Abelian groups enjoying spectral synthesis is still missing. We present a ring theoretical approach to the issue. In particular, we provide a generalization of the Principal Ideal Theorem on discrete Abelian groups.


1999 ◽  
Vol 19 (3) ◽  
pp. 559-569
Author(s):  
D. BENARDETE ◽  
S. G. DANI

Given a Lie group $G$ and a lattice $\Gamma$ in $G$, a one-parameter subgroup $\phi$ of $G$ is said to be rigid if for any other one-parameter subgroup $\psi$, the flows induced by $\phi$ and $\psi$ on $\Gamma\backslash G$ (by right translations) are topologically orbit-equivalent only if they are affinely orbit-equivalent. It was previously known that if $G$ is a simply connected solvable Lie group such that all the eigenvalues of $\mathrm{Ad} (g) $, $g\in G$, are real, then all one-parameter subgroups of $G$ are rigid for any lattice in $G$. Here we consider a complementary case, in which the eigenvalues of $\mathrm{Ad} (g)$, $g\in G$, form the unit circle of complex numbers.Let $G$ be the semidirect product $N \rtimes M$, where $M$ and $N$ are finite-dimensional real vector spaces and where the action of $M$ on the normal subgroup $N$ is such that the center of $G$ is a lattice in $M$. We prove that there is a generic class of abelian lattices $\Gamma$ in $G$ such that any semisimple one-parameter subgroup $\phi$ (namely $\phi$ such that $\mathrm{Ad} (\phi_t)$ is diagonalizable over the complex numbers for all $t$) is rigid for $\Gamma$ (see Theorem 1.4). We also show that, on the other hand, there are fairly high-dimensional spaces of abelian lattices for which some semisimple $\phi$ are not rigid (see Corollary 4.3); further, there are non-rigid semisimple $\phi$ for which the induced flow is ergodic.


2011 ◽  
Vol 54 (4) ◽  
pp. 726-738
Author(s):  
M. I. Ostrovskii

AbstractLet BY denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection P: Y → X such that P(BY ) ⊂ A. Each finite dimensional normed space has a minimal-volume sufficient enlargement that is a parallelepiped; some spaces have “exotic” minimal-volume sufficient enlargements. The main result of the paper is a characterization of spaces having “exotic” minimal-volume sufficient enlargements in terms of Auerbach bases.


Author(s):  
Francis Clarke

Let G be a simply connected, semi-simple, compact Lie group, let K* denote Z/2-graded, representable K-theory, and K* the corresponding homology theory. The K-theory of G and of its classifying space BG are well known, (8),(1). In contrast with ordinary cohomology, K*(G) and K*(BG) are torsion-free and have simple multiplicative structures. If ΩG denotes the space of loops on G, it seems natural to conjecture that K*(ΩG) should have, in some sense, a more simple structure than H*(ΩG).


Author(s):  
Alonso Castillo-Ramirez

For a group [Formula: see text] and a set [Formula: see text], let [Formula: see text] be the monoid of all cellular automata over [Formula: see text], and let [Formula: see text] be its group of units. By establishing a characterization of surjunctive groups in terms of the monoid [Formula: see text], we prove that the rank of [Formula: see text] (i.e. the smallest cardinality of a generating set) is equal to the rank of [Formula: see text] plus the relative rank of [Formula: see text] in [Formula: see text], and that the latter is infinite when [Formula: see text] has an infinite decreasing chain of normal subgroups of finite index, condition which is satisfied, for example, for any infinite residually finite group. Moreover, when [Formula: see text] is a vector space over a field [Formula: see text], we study the monoid [Formula: see text] of all linear cellular automata over [Formula: see text] and its group of units [Formula: see text]. We show that if [Formula: see text] is an indicable group and [Formula: see text] is finite-dimensional, then [Formula: see text] is not finitely generated; however, for any finitely generated indicable group [Formula: see text], the group [Formula: see text] is finitely generated if and only if [Formula: see text] is finite.


1997 ◽  
Vol 08 (02) ◽  
pp. 249-265 ◽  
Author(s):  
Toshihiko Masuda

We give an analogous characterization of Longo's canonical endomorphism in the bimodule theory, and by using this, we construct an inclusion of factors of type II 1 from a finite system of bimodules as a parallel construction to that of Longo–Rehren in a type III setting. When the original factors are approximately finite dimensional, we prove this new inclusion is isomorphic to the asymptotic inclusion in the sense of Ocneanu. This solves a conjecture of Longo–Rehren.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 90 ◽  
Author(s):  
Giovanni Bazzoni ◽  
Alberto Raffero

Motivated by known results in locally conformal symplectic geometry, we study different classes of G 2 -structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G 2 -structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G 2 -structures.


Sign in / Sign up

Export Citation Format

Share Document