Estimates for the energy of the solutions to elliptic Dirichlet problems on convex domains

Author(s):  
Graziano Crasta

We provide an estimate of the energy of the solutions to the Poisson equation with constant data and Dirichlet boundary conditions in a convex domain Ω ⊂ Rn. This estimate is obtained by restricting the variational formulation of the problem to the space of functions depending only on the distance from the boundary of Ω. The main tool in the proof is an isoperimetric inequality for convex domains, which is a consequence of the Brunn-Minkowski theorem.

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 647
Author(s):  
Michał Bełdziński ◽  
Marek Galewski ◽  
Igor Kossowski

We study the stability and the solvability of a family of problems −(ϕ(x′))′=g(t,x,x′,u)+f* with Dirichlet boundary conditions, where ϕ, u, f* are allowed to vary as well. Applications for boundary value problems involving the p-Laplacian operator are highlighted.


2010 ◽  
Vol 10 (2) ◽  
Author(s):  
Alberto Ferrero ◽  
Claudio Saccon

AbstractWe study existence and multiplicity results for solutions of elliptic problems of the type -Δu = g(x; u) in a bounded domain Ω with Dirichlet boundary conditions. The function g(x; s) is asymptotically linear as |s| → +∞. Also resonant situations are allowed. We also prove some perturbation results for Dirichlet problems of the type -Δu = g


Author(s):  
Ubaid Ullah ◽  
Muhammad Saleem Chandio

<p>In this study finite difference method (FDM) is used with Dirichlet boundary conditions on rectangular domain to solve the 2D Laplace equation. The chosen body is elliptical, which is discretized into square grids. The finite difference method is applied for numerical differentiation of the observed example of rectangular domain with Dirichlet boundary conditions. The obtained numerical results are<br />compared with analytical solution. The obtained results show the efficiency of the FDM and settled with the obtained exact solution. The study objective is to check the accuracy of FDM for the numerical solutions of elliptical bodies of 2D Laplace equations. The study contributes to find the heat (temperature) distribution inside a regular rectangular elliptical discretized body.</p>


Author(s):  
Vitoriano Ruas

Abstract In a series of papers published since 2017 the author introduced a simple alternative of the $n$-simplex type, to enhance the accuracy of approximations of second-order boundary value problems subject to Dirichlet boundary conditions, posed on smooth curved domains. This technique is based upon trial functions consisting of piecewise polynomials defined on straight-edged triangular or tetrahedral meshes, interpolating the Dirichlet boundary conditions at points of the true boundary. In contrast, the test functions are defined by the standard degrees of freedom associated with the underlying method for polytopic domains. While the mathematical analysis of the method for Lagrange and Hermite methods for two-dimensional second- and fourth-order problems was carried out in earlier paper by the author this paper is devoted to the study of the three-dimensional case. Well-posedness, uniform stability and optimal a priori error estimates in the energy norm are proved for a tetrahedron-based Lagrange family of finite elements. Novel error estimates in the $L^2$-norm, for the class of problems considered in this work, are also proved. A series of numerical examples illustrates the potential of the new technique. In particular, its superior accuracy at equivalent cost, as compared to the isoparametric technique, is highlighted.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
pp. 104123
Author(s):  
Firdous A. Shah ◽  
Mohd Irfan ◽  
Kottakkaran S. Nisar ◽  
R.T. Matoog ◽  
Emad E. Mahmoud

Sign in / Sign up

Export Citation Format

Share Document