Equidistribution of values of rational functions (mod p)

Author(s):  
R. W. K. Odoni ◽  
P. G. Spain

Let R1(x),…, Rd(x) be rational functions in Iℚ(x), such that 1, R1(x),…, Rd(x) are linearly independent over Iℚ. For almost all primes p, their mod p reductions, are well-defined rational functions over Fp and are linearly independent over Fp We show that asymptotically the pointsare uniformly distributed in [0, l)d.

1977 ◽  
Vol 81 (3) ◽  
pp. 377-385 ◽  
Author(s):  
R. C. Baker

1. Introduction. Throughout the paper θ = (θ1, …, θn), φ = (φ1, …, φn), … denote points of Euclidean space Rn. We write Kn for the set of θ in Rn for which θl, …, θn, 1 are linearly independent over the rational numbers. We denote points of the set of integer n-tuples Zn by x, y, … We writeIf α is a real number, ∥α∥ denotes the distance from α to the nearest integer.Let θ ∈ Rn. By a theorem of Dirichlet ((2), chapter 1, theorem VI).for all X ≥ 1. We say that θ is singular ifSingular points form a set of n-dimensional Lebesgue measure zero. In fact, H. Davenport and W. M. Schmidt (3) showed thatfor almost all θ in Rn. Although there are no singular numbers in Kl ((2), p. 94) there are ‘highly singular’ n-tuples in Kn for n ≥ 2.


1962 ◽  
Vol 14 ◽  
pp. 597-601 ◽  
Author(s):  
J. Kiefer

The main object of this paper is to prove the following:Theorem. Let f1, … ,fk be linearly independent continuous functions on a compact space. Then for 1 ≤ s ≤ k there exist real numbers aij, 1 ≤ i ≤ s, 1 ≤ j ≤ k, with {aij, 1 ≤ i, j ≤ s} n-singular, and a discrete probability measure ε*on, such that(a) the functions gi = Σj=1kaijfj 1 ≤ i ≤ s, are orthonormal (ε*) to the fj for s < j ≤ k;(b)The result in the case s = k was first proved in (2). The result when s < k, which because of the orthogonality condition of (a) is more general than that when s = k, was proved in (1) under a restriction which will be discussed in § 3. The present proof does not require this ad hoc restriction, and is more direct in approach than the method of (2) (although involving as much technical detail as the latter in the case when the latter applies).


1990 ◽  
Vol 42 (1) ◽  
pp. 109-125
Author(s):  
Nakhlé Asmar

(1.1) The conjugate function on locally compact abelian groups. Let G be a locally compact abelian group with character group Ĝ. Let μ denote a Haar measure on G such that μ(G) = 1 if G is compact. (Unless stated otherwise, all the measures referred to below are Haar measures on the underlying groups.) Suppose that Ĝ contains a measurable order P: P + P ⊆P; PU(-P)= Ĝ; and P⋂(—P) =﹛0﹜. For ƒ in ℒ2(G), the conjugate function of f (with respect to the order P) is the function whose Fourier transform satisfies the identity for almost all χ in Ĝ, where sgnP(χ)= 0, 1, or —1, according as χ =0, χ ∈ P\\﹛0﹜, or χ ∈ (—P)\﹛0﹜.


1969 ◽  
Vol 12 (5) ◽  
pp. 545-565 ◽  
Author(s):  
Kenneth S. Williams

Let p denote a prime and n a positive integer ≥ 2. Let Nn(p) denote the number of polynomials xn + x + a, a = 1, 2,…, p-l, which are irreducible (mod p). Chowla [5] has made the following two conjectures:Conjecture 1. There is a prime p0(n), depending only on n, such that for all primes p ≥ p0(n)


1967 ◽  
Vol 10 (5) ◽  
pp. 669-673 ◽  
Author(s):  
J.H.H. Chalk

Let (x1, x2, …, xn) denote the coordinates of a point of Euclidean n-space En. Let be a set of n+1 points of En with the property thatform a linearly independent set and define a lattice Λ of pointsby allowing u1, …, un to take all integer values.


Author(s):  
V. Krishna Kumar

SynopsisThe fourth-order equation considered isConditions are given on the coefficients r, p and q which ensure that this differential equation (*) is in the strong limit-2 case at ∞, i.e. is limit-2 at ∞. This implies that (*) has exactly two linearly independent solutions which are in the integrable-square space ℒ2(0, ∞) for all complex numbers λ with im [λ] ≠ 0. Additionally the conditions imply that self-adjoint operators generated by M[·] in ℒ2(0, ∞) are semi-bounded below. The results obtained are applied to the case when the coefficients r, p and q are powers of x ∈ [0, ∞).


1954 ◽  
Vol 6 ◽  
pp. 449-454 ◽  
Author(s):  
Emma Lehmer

It has been shown by Dickson (1) that if (i, j)8 is the number of solutions of (mod p),then 64(i,j)8 is expressible for each i,j, as a linear combination with integer coefficients of p, x, y, a, and b where,anda ≡ b ≡ 1 (mod 4),while the sign of y and b depends on the choice of the primitive root g. There are actually four sets of such formulas depending on whether p is of the form 16n + 1 or 16n + 9 and whether 2 is a quartic residue or not.


1978 ◽  
Vol 26 (1) ◽  
pp. 31-45 ◽  
Author(s):  
J. H. Loxton ◽  
A. J. van der Poorten

AbstractWe consider algebraic independence properties of series such as We show that the functions fr(z) are algebraically independent over the rational functions Further, if αrs (r = 2, 3, 4, hellip; s = 1, 2, 3, hellip) are algebraic numbers with 0 < |αrs|, we obtain an explicit necessary and sufficient condition for the algebraic independence of the numbers fr(αrs) over the rationals.


1975 ◽  
Vol 12 (04) ◽  
pp. 673-683
Author(s):  
G. R. Grimmett

I show that the sumof independent random variables converges in distribution when suitably normalised, so long as theXksatisfy the following two conditions:μ(n)= E |Xn|is comparable withE|Sn| for largen,andXk/μ(k) converges in distribution. Also I consider the associated birth processX(t) = max{n:Sn≦t} when eachXkis positive, and I show that there exists a continuous increasing functionv(t) such thatfor some variableYwith specified distribution, and for almost allu. The functionv, satisfiesv(t) =A(1 +o(t)) logt. The Markovian birth process with parameters λn= λn, where 0 &lt; λ &lt; 1, is an example of such a process.


Author(s):  
Glyn Harman

We write ‖x‖ to denote the least distance from x to an integer, and write p for a prime variable. Duffin and Schaeffer [l] showed that for almost all real α the inequalityhas infinitely many solutions if and only ifdiverges. Thus f(x) = (x log log (10x))−1 is a suitable choice to obtain infinitely many solutions for almost all α. It has been shown [2] that for all real irrational α there are infinitely many solutions to (1) with f(p) = p−/13. We will show elsewhere that the exponent can be increased to 7/22. A very strong result on primes in arithmetic progressions (far stronger than anything within reach at the present time) would lead to an improvement on this result. On the other hand, it is very easy to find irrational a such that no convergent to its continued fraction expansion has prime denominator (for example (45– √10)/186 does not even have a square-free denominator in its continued fraction expansion, since the denominators are alternately divisible by 4 and 9).


Sign in / Sign up

Export Citation Format

Share Document