Eigenvalue problems for the wave equation with strong damping

Author(s):  
Pedro Freitas

This paper presents a study of linear operators associated with the linearisation of general semilinear strongly damped wave equations around stationary solutions. The structure of the spectrum of such operators is considered in detail, with an emphasis on stability questions. Necessary and sufficient conditions for the stability of the trivial solution of the linear equation are given, together with conditions for this solution to become unstable. In the latter case, the mechanisms which are responsible for the change of stability are analysed. These results are then applied to obtain stability and instability conditions for the semilinear problem. In particular, a condition is given which ensures that the dimensions of the centre and unstable manifolds of a stationary solution are the same as when that solution is considered as a stationary solution of an associated parabolic problem.

1995 ◽  
Vol 117 (B) ◽  
pp. 145-153 ◽  
Author(s):  
D. S. Bernstein ◽  
S. P. Bhat

Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.


1983 ◽  
Vol 50 (1) ◽  
pp. 199-203 ◽  
Author(s):  
D. J. Inman

This work examines a linear, asymmetric lumped parameter system. Results on the qualitative behavior of a certain subclass of such systems are presented. In particular, necessary and sufficient conditions for the existence of a linear transformation that transforms an asymmetric system into an equivalent symmetric system are derived. Results on the stability and instability of such systems are presented and stated in terms of the original asymmetric system’s coefficient matrices. This work is compared with that of other authors and numerical examples illustrating the utility and correctness of the results are presented.


Considered herein are the stability and instability properties of solitary-wave solutions of a general class of equations that arise as mathematical models for the unidirectional propagation of weakly nonlinear, dispersive long waves. Special cases for which our analysis is decisive include equations of the Korteweg-de Vries and Benjamin-Ono type. Necessary and sufficient conditions are formulated in terms of the linearized dispersion relation and the nonlinearity for the solitary waves to be stable.


1995 ◽  
Vol 117 (B) ◽  
pp. 145-153 ◽  
Author(s):  
D. S. Bernstein ◽  
S. P. Bhat

Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150018
Author(s):  
Wentao Huang ◽  
Chengcheng Cao ◽  
Dongping He

In this article, the complex dynamic behavior of a nonlinear aeroelastic airfoil model with cubic nonlinear pitching stiffness is investigated by applying a theoretical method and numerical simulation method. First, through calculating the Jacobian of the nonlinear system at equilibrium, we obtain necessary and sufficient conditions when this system has two classes of degenerated equilibria. They are described as: (1) one pair of purely imaginary roots and one pair of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary roots under nonresonant conditions. Then, with the aid of center manifold and normal form theories, we not only derive the stability conditions of the initial and nonzero equilibria, but also get the explicit expressions of the critical bifurcation lines resulting in static bifurcation and Hopf bifurcation. Specifically, quasi-periodic motions on 2D and 3D tori are found in the neighborhoods of the initial and nonzero equilibria under certain parameter conditions. Finally, the numerical simulations performed by the fourth-order Runge–Kutta method provide a good agreement with the results of theoretical analysis.


1994 ◽  
Vol 116 (3) ◽  
pp. 419-428 ◽  
Author(s):  
J. E. Colgate

This paper presents both theoretical and experimental studies of the stability of dynamic interaction between a feedback controlled manipulator and a passive environment. Necessary and sufficient conditions for “coupled stability”—the stability of a linear, time-invariant n-port (e.g., a robot, linearized about an operating point) coupled to a passive, but otherwise arbitrary, environment—are presented. The problem of assessing coupled stability for a physical system (continuous time) with a discrete time controller is then addressed. It is demonstrated that such a system may exhibit the coupled stability property; however, analytical, or even inexpensive numerical conditions are difficult to obtain. Therefore, an approximate condition, based on easily computed multivariable Nyquist plots, is developed. This condition is used to analyze two controllers implemented on a two-link, direct drive robot. An impedance controller demonstrates that a feedback controlled manipulator may satisfy the coupled stability property. A LQG/LTR controller illustrates specific consequences of failure to meet the coupled stability criterion; it also illustrates how coupled instability may arise in the absence of force feedback. Two experimental procedures—measurement of endpoint admittance and interaction with springs and masses—are introduced and used to evaluate the above controllers. Theoretical and experimental results are compared.


1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.


Sign in / Sign up

Export Citation Format

Share Document