The mean value of Hardy sums over short intervals

Author(s):  
Zhefeng Xu ◽  
Wenpeng Zhang
Keyword(s):  
2018 ◽  
Vol 155 (1) ◽  
pp. 126-163 ◽  
Author(s):  
Andrew Granville ◽  
Adam J. Harper ◽  
K. Soundararajan

Halász’s theorem gives an upper bound for the mean value of a multiplicative function$f$. The bound is sharp for general such$f$, and, in particular, it implies that a multiplicative function with$|f(n)|\leqslant 1$has either mean value$0$, or is ‘close to’$n^{it}$for some fixed$t$. The proofs in the current literature have certain features that are difficult to motivate and which are not particularly flexible. In this article we supply a different, more flexible, proof, which indicates how one might obtain asymptotics, and can be modified to treat short intervals and arithmetic progressions. We use these results to obtain new, arguably simpler, proofs that there are always primes in short intervals (Hoheisel’s theorem), and that there are always primes near to the start of an arithmetic progression (Linnik’s theorem).


1987 ◽  
Vol 39 (3) ◽  
pp. 646-672 ◽  
Author(s):  
Adolf Hildebrand

A central problem in probabilistic number theory is to evaluate asymptotically the partial sumsof multiplicative functions f and, in particular, to find conditions for the existence of the “mean value”1.1In the last two decades considerable progress has been made on this problem, and the results obtained are very satisfactory.


2018 ◽  
Vol 14 (10) ◽  
pp. 2571-2581
Author(s):  
Yanjun Yao
Keyword(s):  

In this paper, we consider the mean-value estimate for nonlinear Weyl sums over primes in short intervals and establish the related Bombieri-type theorems. These results have applications in additive problems with prime variables in short intervals.


2009 ◽  
Vol Volume 32 ◽  
Author(s):  
Aleksandar Ivić

International audience We discuss the mean values of the Riemann zeta-function $\zeta(s)$, and analyze upper and lower bounds for $$\int_T^{T+H} \vert\zeta(\frac{1}{2}+it)\vert^{2k}\,dt~~~~~~(k\in\mathbb{N}~{\rm fixed,}~1<\!\!< H \leq T).$$ In particular, the author's new upper bound for the above integral under the Riemann hypothesis is presented.


1998 ◽  
Vol 71 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Isao Kiuchi ◽  
Yoshio Tanigawa

Author(s):  
Noriyuki Kuwano ◽  
Masaru Itakura ◽  
Kensuke Oki

Pd-Ce alloys exhibit various anomalies in physical properties due to mixed valences of Ce, and the anomalies are thought to be strongly related with the crystal structures. Since Pd and Ce are both heavy elements, relative magnitudes of (fcc-fpd) are so small compared with <f> that superlattice reflections, even if any, sometimes cannot be detected in conventional x-ray powder patterns, where fee and fpd are atomic scattering factors of Ce and Pd, and <f> the mean value in the crystal. However, superlattices in Pd-Ce alloys can be analyzed by electron microscopy, thanks to the high detectability of electron diffraction. In this work, we investigated modulated superstructures in alloys with 12.5 and 15.0 at.%Ce.Ingots of Pd-Ce alloys were prepared in an arc furnace under atmosphere of ultra high purity argon. The disc specimens cut out from the ingots were heat-treated in vacuum and electrothinned to electron transparency by a jet method.


1987 ◽  
Vol 26 (06) ◽  
pp. 253-257
Author(s):  
M. Mäntylä ◽  
J. Perkkiö ◽  
J. Heikkonen

The relative partition coefficients of krypton and xenon, and the regional blood flow in 27 superficial malignant tumour nodules in 22 patients with diagnosed tumours were measured using the 85mKr- and 133Xe-clearance method. In order to minimize the effect of biological variables on the measurements the radionuclides were injected simultaneously into the tumour. The distribution of the radiotracers was assumed to be in equilibrium at the beginning of the experiment. The blood perfusion was calculated by fitting a two-exponential function to the measuring points. The mean value of the perfusion rate calculated from the xenon results was 13 ± 10 ml/(100 g-min) [range 3 to 38 ml/(100 g-min)] and from the krypton results 19 ± 11 ml/(100 g-min) [range 5 to 45 ml/(100 g-min)]. These values were obtained, if the partition coefficients are equal to one. The equations obtained by using compartmental analysis were used for the calculation of the relative partition coefficient of krypton and xenon. The partition coefficient of krypton was found to be slightly smaller than that of xenon, which may be due to its smaller molecular weight.


Sign in / Sign up

Export Citation Format

Share Document