scholarly journals Derivation of the nonlinear bending–torsion model for a junction of elastic rods

Author(s):  
Josip Tambača ◽  
Igor Velčić

We derive the one-dimensional bending–torsion equilibrium model for the junction of straight rods. The starting point is a three-dimensional nonlinear elasticity equilibrium problem written as a minimization problem for a union of thin, rod-like bodies. By taking the limit as the thickness of the three-dimensional rods tends to zero, and by using ideas from the theory of Γ-convergence, we find that the resulting model consists of the union of the usual one-dimensional nonlinear bending–torsion rod models which satisfy the following transmission conditions at the junction point: continuity of displacement and rotation of the cross-sections; balance of contact forces and contact couples.

Author(s):  
Rached El Fatmi

A non-uniform warping beam theory including the effects of torsion and shear forces is presented. Based on a displacement model using three warping parameters associated to the three St Venant warping functions corresponding to torsion and shear forces, this theory is free from the classical assumptions on the warpings or on the shears, and valid for any kind of homogeneous elastic and isotropic cross-section. This general theory is applied to analyze, for a representative set of cross-sections, the elastic behavior of cantilever beams subjected to torsion or shear-bending. Numerical results are given for the one-dimensional structural behavior and the three-dimensional stresses distributions; for the stresses in the critical region of the built-in section, comparisons with three-dimensional finite elements computations are presented. The study clearly shows when the effect of the restrained warping is localized or not.


2009 ◽  
Vol 139 (5) ◽  
pp. 1037-1070 ◽  
Author(s):  
Lucia Scardia

We study the problem of the rigorous derivation of one-dimensional models for a thin curved beam starting from three-dimensional nonlinear elasticity. We describe the limiting models obtained for different scalings of the energy. In particular, we prove that the limit functional corresponding to higher scalings coincides with the one derived by dimension reduction starting from linearized elasticity.


2018 ◽  
Vol 24 (8) ◽  
pp. 2591-2618
Author(s):  
Josip Tambača ◽  
Bojan Žugec

In this paper we derive and analyse a one-dimensional model of biodegradable elastic stents. The model is given as a nonlinear system of ordinary differential equations on a graph defined by the geometry of stent struts. The unknowns in the problem are the displacement of the middle curve of the struts, the infinitesimal rotation of the cross-sections of the stent struts, the contact couples and contact forces at struts and a function describing the degradation of the stent. The model is based on the one-dimensional model of a biodegradable elastic curved rod model by Tambača and Žugec (‘One-dimensional quasistatic model of biodegradable elastic curved rods’, Zeitschrift für Angewandte Mathematik und Physik 2015; 66(5): 2759–2785) and the ideas from the one-dimensional elastic stent modelling by Tambača et al. (‘Mathematical modeling of vascular stents’, SIAM Journal on Applied Mathematics 2010; 70(6): 1922–1952) used to formulate contact conditions at vertices. We prove the existence and uniqueness results for the model.


Author(s):  
A. E. Green ◽  
N. Laws ◽  
P. M. Naghdi

AbstractWe discuss non-linear thermodynamical theories of rods and shells using the three-dimensional theory of classical continuum mechanics as a starting point. The three-dimensional theory is reduced to a two-dimensional theory for a shell, or plate, and a one-dimensional theory for a rod by employing an exact expansion for the displacement but an approximation for the temperature. For elastic rods and shells a method of approximation is suggested which brings the respective theories into correspondence with those of Green and Laws (1) and Green, Naghdi and Wain-wright(2).


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2021 ◽  
pp. 1-11
Author(s):  
Weicheng Huang ◽  
Longhui Qin ◽  
Qiang Chen

Abstract Motivated by the observations of snap-through phenomena in pre-stressed strips and curved shells, we numerically investigate the snapping of a pre-buckled hemispherical gridshell under apex load indentation. Our experimentally validated numerical framework on elastic gridshell simulation combines two components: (i) Discrete Elastic Rods method, for the geometrically nonlinear description of one dimensional rods; and (ii) a naive penalty-based energy functional, to perform the non-deviation condition between two rods at joint. An initially planar grid of slender rods can be actuated into a three dimensional hemispherical shape by loading its extremities through a prescribed path, known as buckling induced assembly; next, this pre-buckled structure can suddenly change its bending direction at some threshold points when compressing its apex to the other side. We find that the hemispherical gridshell can undergo snap-through buckling through two different paths based on two different apex loading conditions. The first critical snap-through point slightly increases as the number of rods in gridshell structure becomes denser, which emphasizes the mechanically nonlocal property in hollow grids, in contrast to the local response of continuum shells. The findings may bridge the gap among rods, grids, knits, and shells, for a fundamental understanding of a group of thin elastic structures, and inspire the design of novel micro-electro-mechanical systems and functional metamaterials.


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


1981 ◽  
Vol 42 (19) ◽  
pp. 445-449 ◽  
Author(s):  
A. Fournel ◽  
C. More ◽  
G. Roger ◽  
J.P. Sorbier ◽  
J.M. Delrieu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document