An indefinite and critical concave—convex-type equation

Author(s):  
Humberto Ramos Quoirin ◽  
Pedro Ubilla

We analyse the multiplicity of non-negative solutions for the critical concave—convex-type equationwhere Ω is a bounded domain of ℝN, 1 < r < p and λ > 0, and μ is a real parameter. Combining minimization on the underlying Nehari manifold with energy estimates, we show that, under suitable conditions on a and b, three non-negative solutions may exist when λ is positive and sufficiently small and μ is in a right neighbourhood of μ1, the first weighted eigenvalue of the p-Laplacian. To the best of our knowledge, our multiplicity result is new, even in the semi-linear case p = 2.

2009 ◽  
Vol 51 (3) ◽  
pp. 513-524 ◽  
Author(s):  
NGUYEN THANH CHUNG ◽  
QUỐC ANH NGÔ

AbstractUsing variational arguments we study the non-existence and multiplicity of non-negative solutions for a class equations of the formwhere Ω is a bounded domain inN,N≧ 3,fis a sign-changing Carathéodory function on Ω × [0, +∞) and λ is a positive parameter.


2020 ◽  
Vol 150 (5) ◽  
pp. 2682-2718 ◽  
Author(s):  
Boumediene Abdellaoui ◽  
Antonio J. Fernández

AbstractLet$\Omega \subset \mathbb{R}^{N} $, N ≽ 2, be a smooth bounded domain. For s ∈ (1/2, 1), we consider a problem of the form $$\left\{\begin{array}{@{}ll} (-\Delta)^s u = \mu(x)\, \mathbb{D}_s^{2}(u) + \lambda f(x), & {\rm in}\,\Omega, \\ u= 0, & {\rm in}\,\mathbb{R}^{N} \setminus \Omega,\end{array}\right.$$ where λ > 0 is a real parameter, f belongs to a suitable Lebesgue space, $\mu \in L^{\infty}$ and $\mathbb {D}_s^2$ is a nonlocal ‘gradient square’ term given by $$\mathbb{D}_s^2 (u) = \frac{a_{N,s}}{2} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}\,{\rm d}y.$$ Depending on the real parameter λ > 0, we derive existence and non-existence results. The proof of our existence result relies on sharp Calderón–Zygmund type regularity results for the fractional Poisson equation with low integrability data. We also obtain existence results for related problems involving different nonlocal diffusion terms.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tuhina Mukherjee ◽  
Patrizia Pucci ◽  
Mingqi Xiang

<p style='text-indent:20px;'>In this paper we establish the existence of at least two (weak) solutions for the following fractional Kirchhoff problem involving singular and exponential nonlinearities</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} M\left(\|u\|^{{n}/{s}}\right)(-\Delta)^s_{n/s}u = \mu u^{-q}+ u^{r-1}\exp( u^{\beta})\quad\text{in } \Omega,\\ u&gt;0\qquad\text{in } \Omega,\\ u = 0\qquad\text{in } \mathbb R^n \setminus{ \Omega}, \end{cases} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a smooth bounded domain of <inline-formula><tex-math id="M2">\begin{document}$ \mathbb R^n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ n\geq 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ s\in (0,1) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \mu&gt;0 $\end{document}</tex-math></inline-formula> is a real parameter, <inline-formula><tex-math id="M6">\begin{document}$ \beta &lt;{n/(n-s)} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ q\in (0,1) $\end{document}</tex-math></inline-formula>.The paper covers the so called degenerate Kirchhoff case andthe existence proofs rely on the Nehari manifold techniques.</p>


Author(s):  
Bernhard Ruf ◽  
Pedro Ubilla

We study the existence, nonexistence and multiplicity of non-negative solutions for the family of problemswhere Ω is a bounded domain in ℝ2 and λ > 0 is a parameter. The coefficient a(x) is permitted to change sign. The techniques used in the proofs are a combination of upper and lower solutions, the Trudinger–Moser inequality and variational methods. Note that when f(x, u) = 0 the equation is of Liouville type.


1999 ◽  
Vol 129 (6) ◽  
pp. 1157-1169 ◽  
Author(s):  
M. Comte ◽  
P. Mironescu

We consider the Ginzburg–Landau type equationwhereGis a smooth bounded domain in ℝ2,g ∊ C∞(∂G;ℝ2/ {0}), andε> 0 is a small parameter. We prove the uniqueness of solutions to this equation under some non-vanishing assumptions onuε, or under conditions on the boundary functiong.


Author(s):  
Norimichi Hirano ◽  
Naoki Shioji

We study the existence of multiple solutions for the problemand we show that at least one of them is sign changing. Here Ω is a bounded domain in ℝN with N ⩾ 5 whose boundary is of class C2, ∂/∂ν is the outward normal derivative, and f ∈ LN/2(Ω) whose L2N/(N+2)(Ω) norm is sufficiently small.


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2020 ◽  
Vol 20 (2) ◽  
pp. 373-384
Author(s):  
Quoc-Hung Nguyen ◽  
Nguyen Cong Phuc

AbstractWe characterize the existence of solutions to the quasilinear Riccati-type equation\left\{\begin{aligned} \displaystyle-\operatorname{div}\mathcal{A}(x,\nabla u)% &\displaystyle=|\nabla u|^{q}+\sigma&&\displaystyle\phantom{}\text{in }\Omega,% \\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega,\end{aligned}\right.with a distributional or measure datum σ. Here {\operatorname{div}\mathcal{A}(x,\nabla u)} is a quasilinear elliptic operator modeled after the p-Laplacian ({p>1}), and Ω is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that {p>1} and {q>p}. For measure data, we assume that they are compactly supported in Ω, {p>\frac{3n-2}{2n-1}}, and q is in the sub-linear range {p-1<q<1}. We also assume more regularity conditions on {\mathcal{A}} and on {\partial\Omega\Omega} in this case.


2014 ◽  
Vol 91 (2) ◽  
pp. 273-277 ◽  
Author(s):  
JACEK CHUDZIAK

AbstractWe show that if the pair $(f,g)$ of functions mapping a linear space $X$ over the field $\mathbb{K}=\mathbb{R}\text{ or }\mathbb{C}$ into $\mathbb{K}$ satisfies the composite equation $$\begin{eqnarray}f(x+g(x)y)=f(x)f(y)\quad \text{for }x,y\in X\end{eqnarray}$$ and $f$ is nonconstant, then the continuity on rays of $f$ implies the same property for $g$. Applying this result, we determine the solutions of the equation.


Author(s):  
Vesa Mustonen ◽  
Matti Tienari

Let m: [ 0, ∞) → [ 0, ∞) be an increasing continuous function with m(t) = 0 if and only if t = 0, m(t) → ∞ as t → ∞ and Ω C ℝN a bounded domain. In this note we show that for every r > 0 there exists a function ur solving the minimization problemwhere Moreover, the function ur is a weak solution to the corresponding Euler–Lagrange equationfor some λ > 0. We emphasize that no Δ2-condition is needed for M or M; so the associated functionals are not continuously differentiable, in general.


Sign in / Sign up

Export Citation Format

Share Document