Selection for components of efficient lean growth in Landrace pigs

Author(s):  
M.K. Curran ◽  
N.D. Cameron

To study responses to divergent selection for lean growth rate (LGA), lean food conversion ratio (LFC) and daily food intake (DFI), an experiment was started in 1984 at Edinburgh and Wye. This paper measured the selection pressure applied, the responses in the selection criteria and estimated the genetic and phenotypic relationships between the selection criteria with ad-libitum feeding of Landrace pigs after four generations of selection.The LGA (LFC) selection objective was to obtain equal correlated responses in growth rate (food conversion ratio) and carcass lean content, measured in phenotypic s.d. The LGA, LFC and DFI selection criteria had phenotypic s.d. of 32, 29 and 270 units and results are presented in s.d. units.Boars and gilts were purchased from eight British nucleus herds and boars from national artificial insemination centres in 1982. Homozygous or heterozygous halothane positive pigs were not included in the experiment. The base population consisted of 20 sires and 89 dams. Within each of the three selection groups, there were high and low selection lines with a control line, each consisting of 10 boars and 20 gilts, with a generation interval of one year. There were two control lines, one for LGA and one for LFC and DFI, as selection groups were arrowed continuously. The total number of pigs tested per line and average inbreeding coefficient at generation 4, within selection group are given below.

Author(s):  
N.D. Cameron

An experiment was started in 1984 at Edinburgh and Wye to study responses to divergent selection for lean growth rate (LGA), lean food conversion ratio (LFC) and daily food intake (DFI). This paper measured the selection pressure applied, the responses in the selection criteria and estimated the genetic and phenotypic relationships between the selection criteria with ad-libitum feeding of Large White pigs after four generations of selection.Selection objectives and criteria. The LGA (LFC) selection objective was to obtain equal correlated responses in growth rate (food conversion ratio) and carcass lean content, measured in phenotypic s.d. The LGA, LFC and DFI selection criteria had phenotypic s.d. of 27, 29 and 250 units and results are presented in s.d. units.


1992 ◽  
Vol 54 (1) ◽  
pp. 23-30 ◽  
Author(s):  
S. C. Bishop ◽  
J. S. Broadbent ◽  
R. M. Kay ◽  
I. Rigby ◽  
A. V. Fisher

AbstractThe performance of Hereford × Friesian calves sired by Hereford bulls selected for either lean growth rate (LGR) or lean food conversion ratio (LFCR), or by unselected Hereford bulls, was evaluated on 327 calves on three farms over 2 years. Animals started test at 130 days of age on average and remained on test for approximately 300 days, whereupon all animals were slaughtered and carcass dissections were undertaken. Individual food intake was measured on tioo of the farms (189 animals), but only intake per pen of animals was measured on the third farm and individual food intake had to be estimated. LGR, LFCR and other traits describing performance were calculated from the growth, food intake and carcass composition data.If no breed or environment interactions exist it is expected that proportionately 0-5 of the genetic differences between selected and control line bulls would be transmitted to their offspring. For the LGR and LFCR line bulls these values were 0·38 and 0·44, respectively, however the LGR value had a much smaller confidence interval. Genetic correlations derived from regressing breeding values predicted from offspring performance on breeding values predicted from the bulk's own performance in the selection experiment were 0·62 (s.e. 0·28) and 0·96 (s.e. 0·28) for LGR and LFCR, respectively. Heritabilities were: live-weight gain on test, 0·27; daily gain, 0·48; food intake, 0·06; food conversion ratio, 0·46; predicted carcass lean content, 0·10; killing-out proportion, 0·10; LGR, 0·36 and LFCR, 0·48.


1993 ◽  
Vol 56 (2) ◽  
pp. 225-232 ◽  
Author(s):  
R. A. Mrode ◽  
B. W. Kennedy

AbstractData on 3783 Yorkshire, 2842 Landrace and 937 Duroc littermate pairs of boars, station tested between 1976 and 1989, were used to measure genetic parameters of average daily gain (ADG) from 30 to 90 kg, live backfat at 90 kg (BF), estimated lean growth rate (LGR), average daily food intake, food conversion ratio (FCR) and lean food conversion ratio (LFCR), as well as measures of residual daily food intakes over and above requirements for growth and lean growth. A method was developed to obtain restricted maximum likelihood estimates of genetic variances and covariances under an animal model when observations are on the means of sib pairs. Heritabilities of ADG, BF, LGR, FCR and LFCR were 0·43, 0·59, 0·39, 0·28 and 0·34, respectively. Heritability of daily food intake was 0·45, and heritability of measures of residual daily food intake ranged from 0·30 to 0·38. About half of the variation in daily food intake was residual (0·48 to 0·56). Genetic correlations of ADG with daily food intake, FCR and LFCR were 0·80, −0·28 and −0·09, respectively, and were small and positive (0·18 to 0·34) with measures of residual daily food intake. Backfat had genetic correlations of 0·42, 0·24 and 0·52 with daily food intake, FCR and LFCR, respectively, and genetic correlations between backfat and measures of residual daily food intake ranged from 0·15 to 0·61. Selection against residual food intake may be a useful means of improving efficiency of food utilization.


1995 ◽  
Vol 61 (1) ◽  
pp. 123-132 ◽  
Author(s):  
N. D. Cameron ◽  
M. K. Curran

AbstractThe genotype with feeding regime interaction was examined by testing pigs from four selection groups on both ad libitum and restricted feeding regimes. Within each selection group, there were high, low and control lines, which had been selected for lean food conversion ratio (LFC), daily food intake (DFI) or lean growth rate on ad libitum (LGA) or on restricted (LGS) feeding, in Large White-Edinburgh (LW) and Landrace-Wye (LR) populations. There were 1187 LW pigs and 768 LR pigs in the study, with 344 LW and 133 LR pigs tested on the alternative feeding regime.In the LW population, pigs in the high LGS line grew significantly faster than the high LGA and LFC lines with ad libitum feeding (919 v. 847 and 786 (s.e.d. 31) g/day), but had similar food conversion ratios and backfat depths. The high LGS and high DFI lines were similar for growth rate, daily food intake and food conversion ratio, but backfat depth was significantly lower in the high LGS line than in the high DFI line (12·0 v. 25·9 (s.e.d. 0·7) mm). On restricting feeding, the rankings of the selection lines for growth rate, food conversion ratio and mid-back fat depth were broadly similar to those with ad libitum feeding, except for the high LFC line. In the LR population, the high LGS, LGA and LFC lines did not differ significantly in growth rate, daily food intake, food conversion ratio and backfat depth within either the ad libitum or restricted feeding regimes. Growth rate of the high LGS line was similar to the high DFI line on ad libitum feeding (828 v. 836 (s.e.d. 40) g/day), but significantly higher on restricted feeding (704 v. 636 (s.e.d. 23) g/day). On both feeding regimes, food conversion ratio and backfat depth were significantly lower in the high LGS line compared with the high DFI line.In the LW population, the genetic correlation between feeding regimes for growth rate was significantly less than one (0·4 (s.e. 0·20)), but was not significantly different from unity (0·8 (s.e. 0·14)) for backfat depths. Based on the performance test results, selection for lean growth with testing on a restricted feeding regime may be preferable to testing animals on an ad libitum feeding regime.


1994 ◽  
Vol 59 (2) ◽  
pp. 281-291 ◽  
Author(s):  
N. D. Cameron ◽  
M. K. Curran

AbstractGenetic and phenotypic parameters and correlated responses in performance test traits were estimated for populations of Large White (LW) and British Landrace (LR) pigs tested in Edinburgh and Wye respectively, to four generations of divergent selection for lean growth rate (LGA), lean food conversion (LFC) and daily food intake (DFI) with ad-libitum feeding.There were differences between the two populations in genetic parameters, as LW heritabilities for growth rate, daily food intake and backfat depths were higher and the correlation between growth rate and backfat was positive for LW, but negative for LR. However, heritabilities, genetic and phenotypic correlations were generally comparable between selection groups, within each population. Genetic and phenotypic correlations indicated that animals with high daily food intakes were faster growing, had positive residual food intakes (RFI), were fatter with higher food conversion ratios. RFI was highly correlated with daily food intake and food conversion ratio, but phenotypically independent of growth rate and backfat, as expected.Selection for LGA, in LW and LR populations, increased growth rate (54 and 101 g/day), but reduced backfat (−3·9 and −2·0 mm), food conversion ratio (−0·23 and −0·25) and total food intake (−11·8 and −12·6 kg). There was no change in daily food intake in LW pigs (−19 g/day), but daily food intake increased in the LR pigs (69 g/day). With selection for LFC in LW and LR populations, there was no response in groivth rate (9 and 9 g/day), but backfat (−4·1 and −2·1 mm), total (−6·6 and −11·8 kg) and daily food intake (−90 and −172 g) were reduced, as animals had lower food conversion ratios (−0·13 and −0·22). LW and LR pigs selected for DFI ate more food in total (6·8 and 5·9 kg) and on a daily basis (314 and 230 g), grew faster (94 and 51 g/day) and had higher food conversion ratios (0·12 and 0·13). Backfat was increased in LW pigs (3·7 mm), but not in the LR population.In general, efficiency of lean growth was improved by increasing groivth rate, with little change in daily food intake from selection for LGA, but was primarily due to reduced daily food intake with selection on LFC.


Author(s):  
N.D. Cameron

Efficient lean growth may, in future, be the main selection objective in terminal sire breeds of sheep. The genetic relationships between growth rate, food intake and food conversion ratio need to be quantified, so that calculation of selection indices for growth rate and carcass lean content can take account of correlated changes in food intake.


1995 ◽  
Vol 61 (2) ◽  
pp. 347-359 ◽  
Author(s):  
N. D. Cameron ◽  
M. K. Curran

AbstractCarcass composition was measured after six generations of divergent selection for lean growth rate on ad-libitum and restricted feeding, lean food conversion and daily food intake in populations of Large White (LW) and Landrace (LR) pigs. There were 161 half-carcass dissections in LW pigs and for LR pigs, a double sampling procedure combined information from 53 half-carcass and 53 hand joint dissections. The performance test started at 30 kg and finished at 85 kg with ad-libitum feeding and after 84 days with restricted feeding, and pigs were slaughtered at the end of the test.In the LR population, selection for lean growth on restricted feeding increased carcass lean content (605 v. 557 (s.e.d. 19) g/kg), but there were no significant responses in carcass lean content with the selection strategies on adlibitum feeding. Selection for lean food conversion and high lean growth on restricted feeding reduced carcass fat content (201 v. 241 (s.e.d. 14) and 150 v. 218 (s.e.d. 18) g/kg), but selection for high lean growth rate with adlibitum increased carcass fat content (212 v. 185 (s.e.d. 11) g/kg). Responses in carcass composition were not significant with selection on daily food intake.In the LW population, selection for high lean food conversion or low daily food intake increased carcass lean content (539 v. 494 and 543 v. 477 (s.e.d. 11) g/kg) to a greater extent than selection on lean growth rate (509 v. 475 g/kg). Responses in carcass fat content were equal and opposite to those in carcass lean content. Selection on lean growth rate with ad-libitum feeding increased lean tissue growth rate (LTGR) (491 v. 422 (s.e.d. 23) g/day), but there was no change in fat tissue growth rate (FTGR) (206 v. 217 (s.e.d. 15) g/day). In contrast, FTGR was reduced with selection on lean food conversion (169 v. 225 g/day), but LTGR was not significantly increased (520 v. 482 g/day). Selection for lean growth rate with restricted feeding combined the desirable strategies of lean growth rate on adlibitum feeding and lean food conversion, as LTGR was increased (416 v. 359 (s.e.d. 12) g/day) and FTGR decreased (126 v. 156 (s.e.d. 7) g/day). The preferred selection strategy may be lean growth rate on restricted feeding, which simultaneously emphasizes rate and efficiency of lean growth.For ad-libitum fed LW pigs, coheritabilities for growth rate, daily food intake and backfat depth with carcass lean content were negative (-0·12, -0·22 and -0·50 (s.e. 0·05), but positive with carcass subcutaneous fat content (0·22, 0·24 and 0·50), when estimated from six generations of performance test data and carcass dissection data in generations 2, 4 and 6.


1983 ◽  
Vol 37 (3) ◽  
pp. 375-385 ◽  
Author(s):  
A. J. Webb ◽  
J. W. B. King

ABSTRACTAn experiment was conducted to show the effectiveness of selection for improved food conversion ratio on ad libitum group feeding. Selection (32 ♀♀ and 8 ♂♂) and unselected control (32 ♀♀ and 16 ♂♂ lines were maintained for seven generations at the rate of one per year. Progeny were fed ad libitum from 27 to 82 kg live weight: boars singly or in pairs, and gilts in litter groups. Selection was on pen average food conversion ratio (food/live-weight gain), recalculated as each pig reached 82 kg.In spite of selection differentials averaging 0·61 s.d. per generation, there was no response (selection minus control) in food conversion at Generation 6 (−0·03, s.e. 0·08). However, there were correlated increases in daily live-weight gain (56, s.e. 18 g), daily food intake (145, s.e. 59 g) and ultrasonic backfat (2·4, s.e. 0·4 mm). In Generation 7, 146 full-sib pairs (male castrate and gilt) were tested on ad libitum or scale (0·77 g/g ad libitum daily food intake) feeding. Line by feeding regime interactions were absent for all traits except killing-out proportion and belly thickness.The increased fatness of the selection line on ad libitum feeding was retained on the scale (2·2 v. 2·4, s.e. 10 mm), suggesting a primary difference in partition of nutrients rather than intake. The selection procedure adopted was not successful in improving food conversion, but no clear conclusions could be drawn from the experiment. Uncertainty remains as to the value of group food consumption measurements in selection programmes.


1990 ◽  
Vol 51 (1) ◽  
pp. 35-46 ◽  
Author(s):  
R. A. Mrode ◽  
C. Smith ◽  
R. Thompson

ABSTRACTCorrelated responses in two lines of Hereford cattle selected for lean growth rate (LGR) from birth to 400 days of age and lean food conversion ratio (LFCR) from 200 to 400 days of age for a period of 8 years were evaluated. Correlated changes were estimated by two methods: deviation of selected lines from a control line and restricted maximum likelihood. Generally, estimates from the two methods were similar but tended to be more precise for the latter. Statistically significant correlated responses occurred in growth rate in the LGR line and in lean proportion and food conversion ratio in both selected lines. Selection for LGR was accompanied by increases in body weight at various ages in both male and female progeny. In the LFCR line there were little or no changes in body weight for male calves but some increases at certain ages for female progeny. There were no adverse correlated responses detected in reproductive traits such as calving difficulty and calving and pre-weaning mortality.


1995 ◽  
Vol 60 (2) ◽  
pp. 281-290 ◽  
Author(s):  
J. C. Kerr ◽  
N. D. Cameron

AbstractCorrelated responses in reproductive performance to five generations of divergent selection for daily food intake (DFI), lean food conversion (LFC), lean growth rate on ad–libitum feeding (LGA), and lean growth rate on scale feeding (LGS) were studied. Litter traits were measured on 1220 Large White gilts. Mean litter weights at birth and weaning were 12·9 kg and 63·5 kg, with average litter sizes of 10·3 and 7·9. Responses to selection in the high and low lines for litter size in the DFI and LFC selection groups were 1·9 and –1·5 (s.e.d. VI) at birth and 0·9 and –1·8 (s.e.d. 1·2) at weaning. Responses in litter birth weights were respectively positive and negative for DFI and LFC (3·0 and –2·8 (s.e.d. 1·4) kg) and the response in LGS (3 kg) was greater than in LGA (–0·1 kg). Selection line differences in litter weaning weight followed a similar pattern to birth weight for DFI and LFC (17·5 and –17·3 (s.e.d. 10·1) kg). Responses in litter weights were a result of selection line differences in both litter sizes and piglet weights. The relationships between litter size, litter weights and piglet weights at birth and weaning were essentially linear. An extra piglet at birth and weaning corresponded to an increase of 1·0 (s.e. 0·02) kg and 6·9 (s.e. 0·1) kg in litter weights. Piglet birth and weaning weights were decreased by 0·03 (s.e. 0·003) kg and 0·19 (s.e. 0·02) kg. A uterine constraint on piglet growth was implied, but there was no evidence for a limit to uterine capacity. Heritabilities for litter size, weight and piglet weight at birth of 0·06, 0·11 (s.e. 0·04) and 0·16 (s.e. 0·02) respectively were similar to those at weaning. Common environmental effects on piglet weights at birth and weaning were substantially higher than the heritabilities (0·38 and 0·45, s.e. 0·01). The study indicated that selection for lean growth on either an ad–libitum or restricted feeding regime did not significantly affect reproductive performance, but the high lean food conversion ratio and low daily food intake selection lines had impaired reproductive performance.


Sign in / Sign up

Export Citation Format

Share Document