IX.—Graphical Analysis of Internal Combustion Engine Indicator Diagrams

1933 ◽  
Vol 52 ◽  
pp. 208-217
Author(s):  
Alex. R. Horne

The analysis of the performance of an internal combustion engine, based upon the indicator diagram, for the purpose of investigating such matters as the cyclical changes of temperature and internal energy content of the charge, and the heat flow between the working agent and the cylinder walls, is of considerable importance.

Author(s):  
Ryan Falkenstein-Smith ◽  
Kang Wang ◽  
Ryan Milcarek ◽  
Jeongmin Ahn

New York State is expected to experience future population growth that is increasingly concentrated in urban areas, where there is already a heavy burden on the existing energy, water and waste management infrastructure. To meet aggressive environmental standards (such as that established by the State’s “80x50” goal), future electrical power capacity must produce substantially fewer greenhouse gas emissions than currently generated by coal- or natural gas-fired power plants. Currently, biogas is combusted to produce heat and electricity via an internal combustion engine generator set. A conventional internal combustion engine generator set is 22–45 % efficient in converting methane to electricity, thus wasting 65–78 % of the biogas energy content unless the lower temperature heat can be recovered. Fuel cells, on the other hand, are 40–60 % efficient in converting methane to electrical energy, and 80–90 % efficient for cogeneration if heat (> 400 °C) is recovered and utilized for heating and cooling in the community power system. This current research studies the feasibility of a community biomass-to-electricity power system which offers significant environmental, economic and resilience improvements over centrally-generated energy, with the additional benefit of reducing or eliminating disposal costs associated with landfills and publicly-owned treatment works (POTWs). Flame Fuel Cell (FFC) performance was investigated while modifying biogas content and fuel flow rate. A maximum power density peak at 748 mWcm-2 and an OCV of 0.856 V was achieved. It should be noted that the performance obtained with the model biofuel is comparable to the performances of direct methane fueled DC-SOFC and SC-SOFC. The common trends also concluded an acceptable range for optimal performance. Although the methane to CO2 ratios of 3:7 and 2:8 produced power, they are not the strongest ratios to have optimal performance, meaning that operation should stay between the 6:4/4:6 ratio range. Lastly, the amount of air added to the biogas mixture is crucial to achieving the optimal performance of the cell. The data obtained confirmed the feasibility of a biofuel driven fuel cell CHP device capable of achieving higher efficiency than existing technologies. The significant power output produced from the sustainable biogas composition is competitive with current hydrocarbon fuel sources. This idea can be expanded for a community waste management infrastructure.


The present investigation was undertaken with the object of determining the specific heat of, and heat-flow from, the highly heated products of combustion which constitute the working fluid within the cylinder of an internal combustion engine, by a method which permitted direct observations to be made upon an actual charge taken into the engine in the ordinary operations of its cycle. The method of experiment is very simple, and the writer believes it to be novel. It consists in subjecting the whole of the highly heated products of the combustion of a gaseous charge to alternate compression and expansion within the engine cylinder while cooling proceeds, and observing by the indicator the successive pressure and temperature-falls from revolution to revolution, together with the temperature and pressure rise and fall due to alternate compression and expansion. The engine is set to run at any given speed, and at the desired moment after the charge of gas and air has been drawn in, compressed, and ignited, the exhaust valve and charge inlet valves are prevented from opening, so that when the piston reaches the termination of its power stroke, the exhaust gases are retained within the cylinder, and the piston compresses them to the minimum volume, expands them again to the maximum volume, and so compresses and expands during the desired number of strokes.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Sign in / Sign up

Export Citation Format

Share Document