scholarly journals Container Slot Co-Allocation Planning with Joint Fleet Agreement in a Round Voyage for Liner Shipping

2013 ◽  
Vol 66 (4) ◽  
pp. 589-603 ◽  
Author(s):  
Jihong Chen ◽  
Shmuel Yahalom

In the liner shipping market carriers share container slots to offer better service and realize economies of scale. This paper studies slot co-allocation planning for a joint fleet in a round trip for a shipping alliance in the liner shipping industry. In particular, a conceptual model is developed based on joint fleet and slot co-allocation management. The factors affecting slot co-allocation planning are explored in detail. A large-scale integer programming model is formulated to guide carriers in an alliance in pursuing an optimal slot co-allocation strategy. In contrast to the existing research, this approach leads to a more accurate representation of the situation for cooperative services in the liner shipping market. Extensive numerical experiments based on a true Asia-Europe cooperative route of COSCO and HANJIN show that the proposed model can be efficiently solved by LINGO11.0 for the case study. The computational results suggest that the mechanism and model can be used to benefit carriers in making better decisions in shipping cooperation services.

Author(s):  
Qiang Meng ◽  
Shuaian Wang ◽  
Zhiyuan Liu

A model was developed for network design of a shipping service for large-scale intermodal liners that captured essential practical issues, including consistency with current services, slot purchasing, inland and maritime transportation, multiple-type containers, and origin-to-destination transit time. The model used a liner shipping hub-and-spoke network to facilitate laden container routing from one port to another. Laden container routing in the inland transportation network was combined with the maritime network by defining a set of candidate export and import ports. Empty container flow is described on the basis of path flow and leg flow in the inland and maritime networks, respectively. The problem of network design for shipping service of an intermodal liner was formulated as a mixed-integer linear programming model. The proposed model was used to design the shipping services for a global liner shipping company.


Author(s):  
Erkan Celik ◽  
Nezir Aydin ◽  
Alev Taskin Gumus

This paper aims to decide on the number of facilities and their locations, procurement for pre and post-disaster, and allocation to mitigate the effects of large-scale emergencies. A two-stage stochastic mixed integer programming model is proposed that combines facility location- prepositioning, decisions on pre-stocking levels for emergency supplies, and allocation of located distribution centers (DCs) to affected locations and distribution of those supplies to several demand locations after large-scale emergencies with uncertainty in demand. Also, the use of the model is demonstrated through a case study for prepositioning of supplies in probable large-scale emergencies in the eastern and southeastern Anatolian sides of Turkey. The results provide a framework for relief organizations to determine the location and number of DCs in different settings, by using the proposed model considering the main parameters, as; capacity of facilities, probability of being affected for each demand points, severity of events, maximum distance between a demand point and distribution center. 


2018 ◽  
Vol 64 (No. 7) ◽  
pp. 316-327 ◽  
Author(s):  
You Peng-Sheng ◽  
Hsieh Yi-Chih

To order to raise chickens for meat, chicken farmers must select an appropriate breed and determine how many broilers to raise in each henhouse. This study proposes a mathematical programming model to develop a production planning and harvesting schedule for chicken farmers. The production planning comprises the number of batches of chickens to be raised in each henhouse, the number of chicks to be raised for each batch, what breed of chicken to raise, when to start raising and the duration of the raising period. The harvesting schedule focuses on when to harvest and how many broilers to harvest each time. Our aim was to develop proper production and harvesting schedules that enable chicken farmers to maximise profits over a planning period. The problem is a highly complicated one. We developed a hybrid heuristic approach to address the issue. The computational results have shown that the proposed model can help chicken farmers to deal with the problems of chicken-henhouse assignment, chicken raising and harvesting, and may thus contribute to increasing profits. A case study of a chicken farmer in Yunlin County (Taiwan) was carried out to illustrate the application of the proposed model. Sensitivity analysis was also conducted to explore the influence of parameter variations.


2020 ◽  
Vol 12 (21) ◽  
pp. 8905
Author(s):  
Wen Yi ◽  
Robyn Phipps ◽  
Hans Wang

This paper focuses on sustainable transportation of prefab products from factories to construction sites by ship. Since the transportation cost for all the prefab products of a construction site is mainly dependent on the number of cargo holds used on ships, a loading plan for prefab products that minimizes the number of holds required is highly desirable. This paper is therefore devoted to the development of an optimal loading plan that decides which prefab products are loaded into each cargo hold and how to pack these prefab products into the holds so that as few holds as possible are used. We formulate the problem as a large-scale integer optimization model whose objective function is to minimize the total number of cargo holds used and whose constraints represent the cargo hold capacity limits. We develop a heuristic to solve the problem and obtain a high-quality solution. We have tested the model and algorithm on a case study that includes 20 prefab products. We find that different cargo holds carry prefab products that have quite different densities. Moreover, the orientations of many prefab products are different from their default orientations. The results demonstrate the applicability of the proposed model and algorithm.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vahid Shahabi ◽  
Adel Azar ◽  
Farshad Faezy Razi ◽  
Mir Feyz Fallah Shams

PurposeCOVID-19 has become a global challenge with a significant rate of prevalence, and it has exerted devastating consequences in epidemic, economic and social terms. Therefore, a number of studies have already been, or are now being, conducted on the detrimental effects of the virus. In this respect, a question may arise: Is there any possibility to turn the threat of the virus outbreak into an opportunity in some sectors such as the banking industry? In this research, the effects of COVID-19 outbreak as an intervening element on the acceptance of branchless banking were studied.Design/methodology/approachIn this research, the factors affecting the acceptance and development of branchless banking in Iran at the time of COVID-19 outbreak were identified by systematically studying the theoretical framework, conducting further research and interviewing the experts; then, a causal loop diagram of the problem in the proposed case study and the flow rate model were presented.FindingsThe simulation results showed that banking transactions and a bank's financial resources would increase by implementing the package policy of reducing the number of branches, promoting incentive policies and increasing the budget rate of the bank in Information Technology (IT). Further, by promoting customers' acceptance of new technologies, the spread of COVID-19 can be viewed as a positive factor, or even a catalyst, in the acceptance and development of branchless banking in Iran.Originality/valueBased on the proposed model, the difficulties faced by individuals during the spread of COVID-19 could act as justifiable incentives to boost appropriate organizational preparations for making changes to the classic working processes. Processes such as telecommuting, job rotation and so on are among these changes.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 625
Author(s):  
Cheng ◽  
Zhao ◽  
Zhang

The purpose of this study is to create a bi-level programming model for the optimal bus stop spacing of a bus rapid transit (BRT) system, to ensure simultaneous coordination and consider the interests of bus companies and passengers. The top-level model attempts to optimize and determine optimal bus stop spacing to minimize the equivalent costs, including wait, in-vehicle, walk, and operator costs, while the bottom-level model reveals the relation between the locations of stops and spatial service coverage to attract an increasing number of passengers. A case study of Chengdu, by making use of a genetic algorithm, is presented to highlight the validity and practicability of the proposed model and analyze the sensitivity of the coverage coefficient, headway, and speed with different spacing between bus stops.


2019 ◽  
Vol 1 (1) ◽  
pp. 30-44 ◽  
Author(s):  
Yuqiang Wang ◽  
Yuguang Wei ◽  
Hua Shi ◽  
Xinyu Liu ◽  
Liyuan Feng ◽  
...  

Purpose The purpose of this paper is to study the unit train make-up scheme for loaded direction in the heavy haul railway. Design/methodology/approach A 0-1 nonlinear integer programming model with the aim of minimizing the idling period between actual train arrival time and expected train arrival time for all loaded unit trains are proposed. Findings The proposed model is applied into a case study based on Daqin heavy haul railway. Results show that the proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway. Originality/value The proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway.


Transport ◽  
2021 ◽  
Vol 36 (6) ◽  
pp. 444-462
Author(s):  
Jiaming Liu ◽  
Bin Yu ◽  
Wenxuan Shan ◽  
Baozhen Yao ◽  
Yao Sun

The yard template problem in container ports determines the assignment of space to store containers for the vessels, which could impact container truck paths. Actually, the travel time of container truck paths is uncertain. This paper considers the uncertainty from two perspectives: (1) the yard congestion in the context of yard truck interruptions, (2) the correlation among adjacent road sections (links). A mixed-integer programming model is proposed to minimize the travel time of container trucks. The reliable shortest path, which takes the correlation among links into account is firstly discussed. To settle the problem, a Shuffled Complex Evolution Approach (SCE-UA) algorithm is designed to work out the assignment of yard template, and the A* algorithm is presented to find the reliable shortest path according to the port operator’s attitude. In our case study, one yard in Dalian (China) container port is chosen to test the applicability of the model. The result shows the proposed model can save 9% of the travel time of container trucks, compared with the model without considering the correlation among adjacent links.


Sign in / Sign up

Export Citation Format

Share Document