High-resolution SE-I imaging of biological membranes using a Schottky field-emission in-lens SEM

Author(s):  
R.P. Apkarian

Previous notes have described efforts to routinely collect quality SE-I image contrasts of biologically significant particulate membrane features (1-10 nm) in the context of whole cells and tissue fragments. Utilizing SEMs equipped with in-lens specimen stages and field emission sources (Schottky and cold cathode) operated at 15-30 kV and in conjunction with specimens coated with 1 nm Cr films (Z=24), nanometer resolution of biological samples may be attained. This note describes the definition of optimal electron source conditions for the high resolution imaging of cell membrane features μ 10 nm. The Schottky field emitter equipped ISI DS-130F SEM, in-house at the Yerkes Research Facility, was operated at 5-20 kV accelerating voltages (A.V.) and at 4 or 4.8 kV extraction voltages (E.V.). Although we have published images of soft and hard biological sections and isolated cells containing 1-10 nm particle contrasts by operating the SEM at 25-30 kV A.V., we have maintained 4 kV extraction voltage and not attempted using 4.8 kV above 25 kV A.V.

Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


1993 ◽  
Vol 48 (1-2) ◽  
pp. 77-91 ◽  
Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

2003 ◽  
Vol 9 (4) ◽  
pp. 273-278 ◽  
Author(s):  
Stanley Erlandsen ◽  
Ming Lei ◽  
Ines Martin-Lacave ◽  
Gary Dunny ◽  
Carol Wells

The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at −125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.


1998 ◽  
Vol 4 (S2) ◽  
pp. 396-397
Author(s):  
T. Kaneyama ◽  
K. Tsuno ◽  
T. Honda ◽  
M. Kersker ◽  
K. Tsuda ◽  
...  

In the field of biological and materials sciences, the importance of energy filter transmission electron microscope(EF-TEM) is increasing. Because it is a powerful instrument for contrast enhancement and obtaining elemental mapping images. We have developed a 200kV EF-TEM equipped with a fieldemission gun and in-column spectrometer. The new EF-TEM JEM-2010FEF inherits the performance in high resolution imaging and analysis from field emission TEM. The outer view is shown in Fig.l.Figure 2 shows the lens configuration of JEM-2010FEF. An in-column Q-type spectrometer is introduced within the imaging lens system. It was designed to have image distortion less than 1% and dispersion power 1.2p.m/eV for 200keV electrons. There is no need of compensating procedure of distortion. Imaging lens system consists of two objective lenses, three intermediate lenses and three projector lenses. The 8-stage imaging lens system enables wide range of imaging modes equal to conventional TEMs; energy spectroscopic image of magnification from ×200 to × 1,500,000, energy spectroscopic diffraction of camera length from 200mm to 2,000mm.


Author(s):  
T. Miyokawa ◽  
S. Norioka ◽  
S. Goto

Field emission SEMs (FE-SEMs) are becoming popular due to their high resolution needs. In the field of semiconductor product, it is demanded to use the low accelerating voltage FE-SEM to avoid the electron irradiation damage and the electron charging up on samples. However the accelerating voltage of usual SEM with FE-gun is limited until 1 kV, which is not enough small for the present demands, because the virtual source goes far from the tip in lower accelerating voltages. This virtual source position depends on the shape of the electrostatic lens. So, we investigated several types of electrostatic lenses to be applicable to the lower accelerating voltage. In the result, it is found a field emission gun with a conical anode is effectively applied for a wide range of low accelerating voltages.A field emission gun usually consists of a field emission tip (cold cathode) and the Butler type electrostatic lens.


Sign in / Sign up

Export Citation Format

Share Document