Physical, Chemical, and Crystallographic Characterization of Anodic Coatings on High Strength Aluminum Base Alloys

Author(s):  
R. E. Herfert ◽  
N. T. McDevitt

Durability of adhesive bonded joints in moisture and salt spray environments is essential to USAF aircraft. Structural bonding technology for aerospace applications has depended for many years on the preparation of aluminum surfaces by a sulfuric acid/sodium dichromate (FPL etch) treatment. Recently, specific thin film anodizing techniques, phosphoric acid, and chromic acid anodizing have been developed which not only provide good initial bond strengths but vastly improved environmental durability. These thin anodic films are in contrast to the commonly used thick anodic films such as the sulfuric acid or "hard" sulfuric acid anodic films which are highly corrosion resistant in themselves, but which do not provide good initial bond strengths, particularly in low temperature peel.The objective of this study was to determine the characteristics of anodic films on aluminum alloys that make them corrosion resistant. The chemical composition, physical morphology and structure, and mechanical properties of the thin oxide films were to be defined and correlated with the environmental stability of these surfaces in humidity and salt spray. It is anticipated that anodic film characteristics and corrosion resistance will vary with the anodizing processing conditions.

2014 ◽  
Vol 43 (2) ◽  
pp. 92-97 ◽  
Author(s):  
K. Vijaya Kumar ◽  
Mir Safiulla ◽  
A.N. Khaleel Ahmed

Fiber reinforced thermosetting composites have wide scope in the field of Aerospace and MilitaryApplications. These materials exhibit high strength and high stiffness, besides these composites have long fatiguelife, corrosion resistance, environmental stability, thermal insulation and conductivity. Researchers areexploring possibilities to use natural fiber reinforced polymer composites (NFRPCs) in response to the increasingdemand for environmentally friendly materials and also to develop reusable fiber reinforced thermoplastics withthe desire to reduce the cost and to promote the replacement of thermosetting composites.In this work efforts are put to fabricate fiber thermoplastics made of jute, glass and carbon with (PP)polypropylene as the matrix. The mechanical strength of these fiber reinforced thermoplastics was evaluated andcompared with that of fiber reinforced thermosetting polymers made of same fibers along with epoxy matrix. Thetests clearly indicate that the laminates made of fiber reinforced polypropylene have 7 to 8 times less strengthcompared to thermosetting polymers made of fiber epoxy and it is found that for achieving better strength of thematerial, the polypropylene layers should be more than that of the epoxy matrix or to use alternative thermoplasticmaterials like polyphenylene sulfide (PPS), polyetherimide (PEI) and polyetheretherketone (PEEK). Hence thesematerials are feasible for fabricating low load bearing aircraft interior cabin parts and automobile interiorswhich can be reused or reshaped making them easy to re-work and repair.DOI: http://dx.doi.org/10.3329/jme.v43i2.17832


2012 ◽  
Vol 83 (5) ◽  
pp. 465-471
Author(s):  
Hairong Guo ◽  
Tingting Li ◽  
Hualong Li ◽  
Emi Toshihiko

Alloy Digest ◽  
1995 ◽  
Vol 44 (1) ◽  

Abstract SANDVIK SANICRO 41 is a nickel-base corrosion resistant alloy with a composition balanced to resist both oxidizing and reducing environments. A high-strength version (110) is available for oil and gas production. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-475. Producer or source: Sandvik.


Alloy Digest ◽  
2015 ◽  
Vol 64 (4) ◽  

Abstract This producer has pioneered the development of the -T77 temper, a high strength corrosion resistant temper for Alloy 7150 plate and extrusions. Alloy 7150-T77 provides weight savings opportunities in structure governed by static strength requirements but where "overaged" condition corrosion resistance is required. This datasheet provides information on composition, tensile properties, and compressive strength. It also includes information on corrosion resistance as well as forming. Filing Code: Al-442. Producer or source: Alcoa Mill Products Inc..


Alloy Digest ◽  
1958 ◽  
Vol 7 (5) ◽  

Abstract REVERE No. 430 is an aluminum bronze having high strength, excellent corrosion resistance, and high resistance to sulfuric acid. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-63. Producer or source: Revere Copper and Brass Inc..


Alloy Digest ◽  
2015 ◽  
Vol 64 (11) ◽  

Abstract Nibron Special is an extra high-strength nickel bronze that is corrosion resistant in both marine environments and industrial media. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as machining and joining. Filing Code: Cu-844. Producer or source: Columbia Metals Ltd.


Alloy Digest ◽  
1967 ◽  
Vol 16 (12) ◽  

Abstract EVERDUR-637 is a high-strength, corrosion resistant copper alloy containing silicon and aluminum. It is also characterized by its good forging and machining qualities. It is recommended for fasteners, valve stems, marine hardware, cable connectors, etc. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-183. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract PROMET-115N is a heat treatable nickel-aluminum bronze recommended for corrosion resistant, high strength bearings, gears and castings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-175. Producer or source: American Crucible Products Company.


Alloy Digest ◽  
1954 ◽  
Vol 3 (5) ◽  

Abstract Reynolds R301 is a composite material, constituted of a core of high strength aluminum alloy, clad with a corrosion-resistant aluminum alloy. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive, shear, and bearing strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Al-16. Producer or source: Reynolds Metals Company.


Sign in / Sign up

Export Citation Format

Share Document