A Preliminary Study of Thin Bird Disease

Author(s):  
Ronald W. Davis ◽  
Samual Kenzy ◽  
Erik H. Stauber

We have initiated a study of a disease that is usually fatal to domestic parakeets and canaries. We have called this syndrome “thin bird disease” for lack of a better name.Clinically, the disease is diagnosed after observing a bird that is thin, exhibits severe weight loss, lethargy, and ruffled feathers. Fecal smears of affected birds contain many very large, single-celled, rod-shaped bacteria measuring up to 1μm x 90μm.Post mortem examination of birds exhibiting external symptoms of the disease reveals an enlarged ventriculus (gizzard) that contains unmacerated seeds. A jelly-like mass is found in the ventriculus and pro-ventriculus of affected birds. This material contains bacteria morphologically identical to those found in fecal smears (Figs. 3, 4).Samples of ventriculus and pro-ventriculus from birds clinically diagnosed as diseased and normal were collected and processed for light microscopy, scanning and transmission electron microscopy. The specimens were fixed in half strength Karnovsky's fixative, post fixed in OsO4, and either embedded in plastic or critical point dried.

Author(s):  
John H. L. Watson ◽  
Jessica Goodwin ◽  
E. Osborne Coates

Biopsies of lung were taken at operation from a patient with semi-acute diffuse pulmonary infiltrates for study by TEM and SEM. Tissue by light microscopy showed non-caseating granulomas consistent with sarcoidosis. Clinical evidence suggested a hypersensitivity reaction related to inhalation of substance of undetermined nature. Samples were fixed in glutaraldehyde, cacodylate-buffered. They were critical point dried and coated with Au-Pd for SEM, and were handled appropriately for TEM in Araldite. Sections were contrasted with uranyl acetate and lead citrate.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2021 ◽  
Vol 123 (6) ◽  
pp. 151761
Author(s):  
Tasuku Hiroshige ◽  
Kei-Ichiro Uemura ◽  
Shingo Hirashima ◽  
Kiyosato Hino ◽  
Akinobu Togo ◽  
...  

Zootaxa ◽  
2018 ◽  
Vol 4521 (1) ◽  
pp. 145
Author(s):  
URFA BIN TAHIR ◽  
DENG QIONG ◽  
WANG ZHE ◽  
LI SEN ◽  
LIU YANG ◽  
...  

Tokophrya species are either free-living or facultative ectosymbiotic suctorians associated with copepods, isopods, mysids, decapods and amphipods. Tokophrya huangmeiensis in particular is found to be epizoic with the redclaw crayfish Cherax quadricarinatus Von Martens, 1868, which has been observed as part of an ongoing investigation of freshwater ciliates biodiversity in Huanggang, Hubei, China (Tahir et al. 2017). This first study on T. huangmeiensis based on morphological features using light microscopy and small subunit ribosomal DNA sequence (Tahir et al. 2017), suggested that more detailed descriptions on the physiological and structural changes of this species should be done. Thus, in this study, we looked at the ultrastructures of T. huangmeiensis using electron microscopy, including both scanning (SEM) and transmission electron microscopy (TEM). 


Phytotaxa ◽  
2015 ◽  
Vol 207 (1) ◽  
pp. 135 ◽  
Author(s):  
Giovanni Raul Bogota ◽  
Carina Hoorn ◽  
Wim Star ◽  
Rob Langelaan ◽  
Hannah Banks ◽  
...  

Sabinaria magnifica is so far the only known species in the recently discovered tropical palm genus Sabinaria (Arecaceae). Here we present a complete description of the pollen morphology of this palm species based on light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We also made SEM-based comparisons of Sabinaria with other genera within the tribe Cryosophileae. Pollen grains of Sabinaria magnifica resemble the other genera in the heteropolar, slightly asymmetric monads, and the monosulcate and tectate exine with perforate surface. Nevertheless, there are some clear differences with Thrinax, Chelyocarpus and Cryosophila in terms of aperture and exine. S. magnifica differs from its closest relative, Itaya amicorum, in the exine structure. This study shows that a combination of microscope techniques is essential for the identification of different genera within the Cryosophileae and may also be a necessary when working with other palynologically less distinct palm genera. 


Author(s):  
Mariella Sele ◽  
Stefan Wernitznig ◽  
Saška Lipovšek ◽  
Snježana Radulović ◽  
Johannes Haybaeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document