Observations of the Golgi Apparatus in Pisum Primary Roots

Author(s):  
Gordon C. Spink

It is known that the product of the Golgi apparatus vesicles is deposited at and localized in the cell wall. This is accomplished by the formation of the hypertrophied dictyosomes and the subsequent movement of these vesicles to the plasma membrane (Fig. 1). After fusion with the plasma membrane, the secreted material is released into the cell wall area and, in some plants under appropriate conditions, moves outward through the cell wall and appears as a droplet on the root tip.In primary roots of Pisum sativum, var. Alaska (common garden pea) the Golgi apparatus vesicle product accumulates between the plasma membrane and the cell wall, particularly in those cells at the extreme tip of the root. These cells are formed at the acropetal end of the columella cells.

1989 ◽  
Vol 37 (6) ◽  
pp. 877-884 ◽  
Author(s):  
M Pavelka ◽  
A Ellinger

We studied the subcellular localization of glycoconjugates recognized by the garden pea and lentil lectins (Pisum sativum, PSA; Lens culinaris, LCA) in mature absorptive cells of duodenum and jejunum of fasted rats. PSA and LCA are mannose-, glucose-, and N-acetyl-glucosamine-recognizing lectins that bind with high affinity to fucosylated core regions of N-glycosidically linked glycans. The binding reactions were cytochemically demonstrated in a pre-embedment incubation system using peroxidase-labeled lectins. Both pea and lentil lectins bound with constituents of nuclear envelope and endoplasmic reticulum, cisternae of the Golgi apparatus, several Golgi-associated vesicles, lysosomes, and portions of the plasma membrane. PSA and LCA label was non-homogeneous in the endoplasmic reticulum; in the Golgi apparatus the reactions were most intense in the cis and medial cisternae of the stacks. For inhibition of the intense reactions apparent in the Golgi apparatus, in lysosomes, and at the plasma membrane, considerably higher concentrations of competitive sugars were necessary than for abolition of the endoplasmic reticulum label. This indicates that endoplasmic reticulum glycoconjugates bind at low affinities with pea and lentil lectins, and that high-affinity PSA/LCA-binding glycoconjugates, which may correspond to corefucosylated N-linked glycans, predominate in cis and medial Golgi cisternae, lysosomes, and at the plasma membrane.


1991 ◽  
Vol 112 (4) ◽  
pp. 589-602 ◽  
Author(s):  
P J Moore ◽  
K M Swords ◽  
M A Lynch ◽  
L A Staehelin

The Golgi apparatus of plant cells is the site of assembly of glycoproteins, proteoglycans, and complex polysaccharides, but little is known about how the different assembly pathways are organized within the Golgi stacks. To study these questions we have employed immunocytochemical techniques and antibodies raised against the hydroxyproline-rich cell wall glycoprotein, extensin, and two types of complex polysaccharides, an acidic pectic polysaccharide known as rhamnogalacturonan I (RG-I), and the neutral hemicellulose, xyloglucan (XG). Our micrographs demonstrate that individual Golgi stacks can process simultaneously glycoproteins and complex polysaccharides. O-linked arabinosylation of the hydroxyproline residues of extensin occurs in cis-cisternae, and glycosylated molecules pass through all cisternae before they are packaged into secretory vesicles in the monensin-sensitive, trans-Golgi network. In contrast, in root tip cortical parenchyma cells, the anti-RG-I and the anti-XG antibodies are shown to bind to complementary subsets of Golgi cisternae, and several lines of indirect evidence suggest that these complex polysaccharides may also exit from different cisternae. Thus, RG-I type polysaccharides appear to be synthesized in cis- and medial cisternae, and have the potential to leave from a monensin-insensitive, medial cisternal compartment. The labeling pattern for XG suggests that it is assembled in trans-Golgi cisternae and departs from the monensin-sensitive trans-Golgi network. This physical separation of the synthesis/secretion pathways of major categories of complex polysaccharides may prevent the synthesis of mixed polysaccharides, and provides a means for producing secretory vesicles that can be targeted to different cell wall domains.


1990 ◽  
Vol 96 (4) ◽  
pp. 705-710
Author(s):  
DAVID A. BRUMMELL ◽  
ANNE CAMIRANDE ◽  
GORDON A. MACLACHLAN

Rate-zonal centrifugation of pea (Pisum sativum var. Alaska) stem microsomal membranes on a linear Renografln gradient separated Golgi secretory vesicles from dictyosomes. Secretory vesicles possessed high levels of xyloglucan fucosyl transferase activity, which effects the final decoration of stem xyloglucan side-chains, but lacked substantial xyloglucan xylosyl transferase activity, which is required for the synthesis of the xyloglucan backbone. In contrast, total dictyosomal membranes possessed both fucosyl and xylosyl transferase activities. Isopycnic centrifugation of a homogenized dictyosome-enriched membrane preparation on a shallower Renografln gradient indicated that lighter dictyosomal membranes possessed xylosyl transferase but relatively little fucosyl transferase activity. The bulk of the dictyosomal membranes formed a denser peak in which xylosyl and fucosyl transferase activities codistributed. Thus a differential localization of function in the Golgi apparatus during biosynthesis of xyloglucan is indicated. A tentative mechanism is suggested in which the elaboration of the glucose-xylose backbone is initiated in lighter dictyosomal membranes, backbone synthesis is concluded and fucosylation begun in denser dictyosomal membranes, and fucosylation completed in Golgi secretory vesicles during transport of xyloglucan to the cell wall.


2020 ◽  
Author(s):  
Heather E. McFarlane ◽  
Daniela Mutwil-Anderwald ◽  
Jana Verbančič ◽  
Kelsey L. Picard ◽  
Timothy E. Gookin ◽  
...  

AbstractCellulose synthesis is essential for plant morphology, water transport and defense, and provides raw material for biomaterials and fuels. Cellulose is produced at the plasma membrane by Cellulose Synthase (CESA) protein complexes (CSCs). CSCs are assembled in the endomembrane system and then trafficked from the Golgi apparatus and trans-Golgi Network (TGN) to the plasma membrane. Since CESA enzymes are only active in the plasma membrane, control of CSC secretion is a critical step in the regulation of cellulose synthesis. However, the regulatory framework for CSC secretion is not clarified. In this study, we identify members of a family of seven transmembrane domain-containing proteins (7TMs) as important for cellulose production during cell wall integrity stress. 7TM proteins are often associated with guanine nucleotide-binding protein (G) protein signalling and mutants in several of the canonical G protein complex components phenocopied the 7tm mutant plants. Unexpectedly, the 7TM proteins localized to the Golgi apparatus/TGN where they interacted with the G protein complex. Here, the 7TMs and G proteins regulated CESA trafficking, but did not affect general protein secretion. Furthermore, during cell wall stress, 7TMs’ localization was biased towards small CESA-containing vesicles, specifically associated with CSC trafficking. Our results thus outline how a G protein-coupled module regulates CESA trafficking and reveal that defects in this process lead to exacerbated responses upon exposure to cell wall integrity stress.


2017 ◽  
Vol 114 (19) ◽  
pp. 5047-5052 ◽  
Author(s):  
Yuqi Wang ◽  
Ruihong Li ◽  
Demou Li ◽  
Xiaomin Jia ◽  
Dangwei Zhou ◽  
...  

Members of the aquaporin (AQP) family have been suggested to transport aluminum (Al) in plants; however, the Al form transported by AQPs and the roles of AQPs in Al tolerance remain elusive. Here we report that NIP1;2, a plasma membrane-localized member of the Arabidopsis nodulin 26-like intrinsic protein (NIP) subfamily of the AQP family, facilitates Al-malate transport from the root cell wall into the root symplasm, with subsequent Al xylem loading and root-to-shoot translocation, which are critical steps in an internal Al tolerance mechanism in Arabidopsis. We found that NIP1;2 transcripts are expressed mainly in the root tips, and that this expression is enhanced by Al but not by other metal stresses. Mutations in NIP1;2 lead to hyperaccumulation of toxic Al3+ in the root cell wall, inhibition of root-to-shoot Al translocation, and a significant reduction in Al tolerance. NIP1;2 facilitates the transport of Al-malate, but not Al3+ ions, in both yeast and Arabidopsis. We demonstrate that the formation of the Al-malate complex in the root tip apoplast is a prerequisite for NIP1;2-mediated Al removal from the root cell wall, and that this requires a functional root malate exudation system mediated by the Al-activated malate transporter, ALMT1. Taken together, these findings reveal a critical linkage between the previously identified Al exclusion mechanism based on root malate release and an internal Al tolerance mechanism identified here through the coordinated function of NIP1;2 and ALMT1, which is required for Al removal from the root cell wall, root-to-shoot Al translocation, and overall Al tolerance in Arabidopsis.


Author(s):  
John E. Ridgway

During the formation of cell wall layers of the sporocyte and spore during sporogenesis in Anthoceros fuciformis Mont., there appears to he an intimate relationship between the Golgi apparatus and cell wall deposition. As the initial sporocyte wall if formed, the cisternae of the Golgi apparatus become extensively hypertrophied and produce large vesicles which move through the cytoplasm and empty their contents through the plasma membrane to form the developing primary sporocyte wall layer (I) (Figure 1). In both methods of fixation used, a similiar electron density was observed in the contents of the Golgi cisternae, the Golgi secretory vesicles, and the components of the sporocyte wall layer-I.


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


1993 ◽  
Vol 3 (5) ◽  
pp. 637-646 ◽  
Author(s):  
Jian-Kang Zhu ◽  
Jun Shi ◽  
Utpal Singh ◽  
Sarah E. Wyatt ◽  
Ray A. Bressan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document