scholarly journals Affinity cytochemical differentiation of glycoconjugates of small intestinal absorptive cells using Pisum sativum and Lens culinaris lectins.

1989 ◽  
Vol 37 (6) ◽  
pp. 877-884 ◽  
Author(s):  
M Pavelka ◽  
A Ellinger

We studied the subcellular localization of glycoconjugates recognized by the garden pea and lentil lectins (Pisum sativum, PSA; Lens culinaris, LCA) in mature absorptive cells of duodenum and jejunum of fasted rats. PSA and LCA are mannose-, glucose-, and N-acetyl-glucosamine-recognizing lectins that bind with high affinity to fucosylated core regions of N-glycosidically linked glycans. The binding reactions were cytochemically demonstrated in a pre-embedment incubation system using peroxidase-labeled lectins. Both pea and lentil lectins bound with constituents of nuclear envelope and endoplasmic reticulum, cisternae of the Golgi apparatus, several Golgi-associated vesicles, lysosomes, and portions of the plasma membrane. PSA and LCA label was non-homogeneous in the endoplasmic reticulum; in the Golgi apparatus the reactions were most intense in the cis and medial cisternae of the stacks. For inhibition of the intense reactions apparent in the Golgi apparatus, in lysosomes, and at the plasma membrane, considerably higher concentrations of competitive sugars were necessary than for abolition of the endoplasmic reticulum label. This indicates that endoplasmic reticulum glycoconjugates bind at low affinities with pea and lentil lectins, and that high-affinity PSA/LCA-binding glycoconjugates, which may correspond to corefucosylated N-linked glycans, predominate in cis and medial Golgi cisternae, lysosomes, and at the plasma membrane.

Author(s):  
Gordon C. Spink

It is known that the product of the Golgi apparatus vesicles is deposited at and localized in the cell wall. This is accomplished by the formation of the hypertrophied dictyosomes and the subsequent movement of these vesicles to the plasma membrane (Fig. 1). After fusion with the plasma membrane, the secreted material is released into the cell wall area and, in some plants under appropriate conditions, moves outward through the cell wall and appears as a droplet on the root tip.In primary roots of Pisum sativum, var. Alaska (common garden pea) the Golgi apparatus vesicle product accumulates between the plasma membrane and the cell wall, particularly in those cells at the extreme tip of the root. These cells are formed at the acropetal end of the columella cells.


1970 ◽  
Vol 44 (3) ◽  
pp. 492-500 ◽  
Author(s):  
R. D. Cheetham ◽  
D. James Morré ◽  
Wayne N. Yunghans

Enzymatic activities associated with Golgi apparatus-, endoplasmic reticulum-, plasma membrane-, mitochondria-, and microbody-rich cell fractions isolated from rat liver were determined and used as a basis for estimating fraction purity. Succinic dehydrogenase and cytochrome oxidase (mitochondria) activities were low in the Golgi apparatus-rich fraction. On the basis of glucose-6-phosphatase (endoplasmic reticulum) and 5'-nucleotidase (plasma membrane) activities, the Golgi apparatus-rich fraction obtained directly from sucrose gradients was estimated to contain no more than 10% endoplasmic reticulum- and 11% plasma membrane-derived material. Total protein contribution of endoplasmic reticulum, mitochondria, plasma membrane, microbodies (uric acid oxidase), and lysosomes (acid phosphatase) to the Golgi apparatus-rich fraction was estimated to be no more than 20–30% and decreased to less than 10% with further washing. The results show that purified Golgi apparatus fractions isolated routinely may exceed 80% Golgi apparatus-derived material. Nucleoside di- and triphosphatase activities were enriched 2–3-fold in the Golgi apparatus fraction relative to the total homogenate, and of a total of more than 25 enzyme-substrate combinations reported, only thiamine pyrophosphatase showed a significantly greater enrichment.


1989 ◽  
Vol 258 (2) ◽  
pp. 541-545 ◽  
Author(s):  
R Reiter ◽  
R Otter ◽  
A Wendel

Selenium (Se)-deficient mice were labelled in vivo with single pulses of [75Se]selenite, and the intrahepatic distribution of the trace element was studied by subcellular fractionation. At 1 h after intraperitoneal injection of 3.3 or 10 micrograms of Se/kg body weight, 15% of the respective doses were found in the liver. Accumulation in the subcellular fractions followed the order: Golgi vesicular much greater than lysosomal greater than cytosolic = microsomal greater than mitochondrial, peroxisomal, nuclear and plasma-membrane fraction. At a dose of 3.3 micrograms/kg, more than 90% of the hepatic Se was protein-bound. When cross-contamination was accounted for, the following specific Se contents of the subcellular compartments were extrapolated: Golgi apparatus, 7.50 pmol/mg; cytosol, 0.90 pmol/mg; endoplasmic reticulum, 0.80 pmol/mg; mitochondria, 0.49 pmol/mg; nuclei, lysosomes, peroxisomes and plasma membrane, less than 0.4 pmol/mg. At 10 micrograms/kg, a roughly 2-3-fold increase in Se content of all fractions was found without major changes in the intrahepatic distribution pattern. An extraordinary rise in the cytosolic fraction was due to an apparently non-protein-bound Se pool. At 24 h after dosing, total hepatic Se had decreased to 6% of the initial dose and had become predominantly protein-bound. The 60% decrease in hepatic Se was reflected in a similar fall in the subcellular levels of the trace element. The Golgi apparatus still had the highest specific Se content, although accumulation was 5 times less than that after 1 h. The cytosolic pool accounted for 50% of the hepatic Se at both labelling times. After 1 h the Golgi apparatus was, with 19%, the second largest intrahepatic pool, followed by the endoplasmic reticulum with 16%. The high affinity and fast response of the Golgi apparatus to Se supplementation of deficient mice is interpreted in terms of a predominant function of this cell compartment in the processing and the export of Se-proteins from the liver.


1976 ◽  
Vol 24 (6) ◽  
pp. 713-724 ◽  
Author(s):  
F Roels

In sheep hepatocytes catalase activity was demonstrated both within peroxisomes and within the cytosol. In the cytosol the catalase reaction product is contiguous to the plasma membrane and surrounds the nuclei, rough endoplasmic reticulum, cisternae, mitochondria and Golgi apparatus. This is the first cytochemical demonstration of guine extraperoxisomal catalase. No catalase reaction product was seen in the cytosol of nonparenchymal cells. To demonstrate catalase, both glutaraldehyde and formaldehyde fixation were used, followed by a diaminobenzidine technique modified from Novikoff and Goldfischer. Control reactions were performed to distinguish catalase reaction product from adsorption of oxidized diaminobenzidine and from precipitate due to oxidase-, peroxidase- or heat-stable peroxidatic activities. The results were evaluated in the light and electron microscopes.


1990 ◽  
Vol 68 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
K. M. Fry ◽  
S. B. McIver

Light and electron microscopy were used to observe development of the lateral palatal brush in Aedes aegypti (L.) larvae. Development was sampled at 4-h intervals from second- to third-instar ecdyses. Immediately after second-instar ecdysis, the epidermis apolyses from newly deposited cuticle in the lateral palatal pennicular area to form an extensive extracellular cavity into which the fourth-instar lateral palatal brush filaments grow as cytoplasmic extensions. On reaching their final length, the filaments deposit cuticulin, inner epicuticle, and procuticle sequentially on their outer surfaces. The lateral palatal crossbars, on which the lateral palatal brush filaments insert, form after filament development is complete. At the beginning of development, the organelles involved in plasma membrane and cuticle production are located at the base and middle of the cells. As the filament rudiments grow, most rough endoplasmic reticulum, mitochondria, and Golgi apparatus move to the apex of the epidermal cells and into the filament rudiments. After formation of the lateral palatal brush filaments and lateral palatal crossbars, extensive organelle breakdown occurs. Lateral palatal brush formation is unusual in that no digestion and resorption of old endocuticle occurs prior to deposition of new cuticle. No mucopolysaccharide secretion by the lateral palatal brush epidermis was observed, nor were muscle fibres observed to attach to the lateral palatal crossbars, as has been suggested by other workers.


2003 ◽  
Vol 14 (12) ◽  
pp. 4783-4793 ◽  
Author(s):  
Yukako Fujinaga ◽  
Anne A. Wolf ◽  
Chiara Rodighiero ◽  
Heidi Wheeler ◽  
Billy Tsai ◽  
...  

Cholera toxin (CT) travels from the plasma membrane of intestinal cells to the endoplasmic reticulum (ER) where a portion of the A-subunit, the A1 chain, crosses the membrane into the cytosol to cause disease. A related toxin, LTIIb, binds to intestinal cells but does not cause toxicity. Here, we show that the B-subunit of CT serves as a carrier for the A-subunit to the ER where disassembly occurs. The B-subunit binds to gangliosides in lipid rafts and travels with the ganglioside to the ER. In many cells, LTIIb follows a similar pathway, but in human intestinal cells it binds to a ganglioside that fails to associate with lipid rafts and it is sorted away from the retrograde pathway to the ER. Our results explain why LTIIb does not cause disease in humans and suggest that gangliosides with high affinity for lipid rafts may provide a general vehicle for the transport of toxins to the ER.


1984 ◽  
Vol 99 (3) ◽  
pp. 1101-1109 ◽  
Author(s):  
A A Rogalski ◽  
J E Bergmann ◽  
S J Singer

We studied the effects of changes in microtubule assembly status upon the intracellular transport of an integral membrane protein from the rough endoplasmic reticulum to the plasma membrane. The protein was the G glycoprotein of vesicular stomatitis virus in cells infected with the Orsay-45 temperature-sensitive mutant of the virus; the synchronous intracellular transport of the G protein could be initiated by a temperature shift-down protocol. The intracellular and surface-expressed G protein were separately detected and localized in the same cells at different times after the temperature shift, by double-immunofluorescence microscopic measurements, and the extent of sialylation of the G protein at different times was quantitated by immunoprecipitation and SDS PAGE of [35S]methionine-labeled cell extracts. Neither complete disassembly of the cytoplasmic microtubules by nocodazole treatment, nor the radical reorganization of microtubules upon taxol treatment, led to any perceptible changes in the rate or extent of G protein sialylation, nor to any marked changes in the rate or extent of surface appearance of the G protein. However, whereas in control cells the surface expression of G was polarized, at membrane regions in juxtaposition to the perinuclear compact Golgi apparatus, in cells with disassembled microtubules the surface expression of the G protein was uniform, corresponding to the intracellular dispersal of the elements of the Golgi apparatus. The mechanisms of transfer of integral proteins from the rough endoplasmic reticulum to the Golgi apparatus, and from the Golgi apparatus to the plasma membrane, are discussed in the light of these observations, and compared with earlier studies of the intracellular transport of secretory proteins.


2008 ◽  
Vol 28 (15) ◽  
pp. 4851-4861 ◽  
Author(s):  
Erwin H. Duitman ◽  
Zane Orinska ◽  
Elena Bulanova ◽  
Ralf Paus ◽  
Silvia Bulfone-Paus

ABSTRACTWhile it is well appreciated that receptors for secreted cytokines transmit ligand-induced signals, little is known about additional roles for cytokine receptor components in the control of ligand transport and secretion. Here, we show that interleukin-15 (IL-15) translocation into the endoplasmic reticulum occurs independently of the presence of IL-15 receptor α (IL-15Rα). Subsequently, however, IL-15 is transported through the Golgi apparatus only in association with IL-15Rα and then is secreted. This intracellular IL-15/IL-15Rα complex already is formed in the endoplasmic reticulum and, thus, enables the further trafficking of complexed IL-15 through the secretory pathway. Just transfecting IL-15Rα in cells, which transcribe but normally do not secrete IL-15, suffices to induce IL-15 secretion. Thus, we provide the first evidence of how a cytokine is chaperoned through the secretory pathway by complexing with its own high-affinity receptor and show that IL-15/IL-15Rα offers an excellent model system for the further exploration of this novel mechanism for the control of cytokine secretion.


Sign in / Sign up

Export Citation Format

Share Document