Ultrastructural Features of Normal and Diseased Hair Revealed by Ion Beam Etching and Freeze Fracture

Author(s):  
M. Spector ◽  
A. C. Brown

Ion beam etching and freeze fracture techniques were utilized in conjunction with scanning electron microscopy to study the ultrastructure of normal and diseased human hair. Topographical differences in the cuticular scale of normal and diseased hair were demonstrated in previous scanning electron microscope studies. In the present study, ion beam etching and freeze fracture techniques were utilized to reveal subsurface ultrastructural features of the cuticle and cortex.Samples of normal and diseased hair including monilethrix, pili torti, pili annulati, and hidrotic ectodermal dysplasia were cut from areas near the base of the hair. In preparation for ion beam etching, untreated hairs were mounted on conducting tape on a conducting silicon substrate. The hairs were ion beam etched by an 18 ky argon ion beam (5μA ion current) from an ETEC ion beam etching device. The ion beam was oriented perpendicular to the substrate. The specimen remained stationary in the beam for exposures of 6 to 8 minutes.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Michela Relucenti ◽  
Giuseppe Familiari ◽  
Orlando Donfrancesco ◽  
Maurizio Taurino ◽  
Xiaobo Li ◽  
...  

Several imaging methodologies have been used in biofilm studies, contributing to deepening the knowledge on their structure. This review illustrates the most widely used microscopy techniques in biofilm investigations, focusing on traditional and innovative scanning electron microscopy techniques such as scanning electron microscopy (SEM), variable pressure SEM (VP-SEM), environmental SEM (ESEM), and the more recent ambiental SEM (ASEM), ending with the cutting edge Cryo-SEM and focused ion beam SEM (FIB SEM), highlighting the pros and cons of several methods with particular emphasis on conventional SEM and VP-SEM. As each technique has its own advantages and disadvantages, the choice of the most appropriate method must be done carefully, based on the specific aim of the study. The evaluation of the drug effects on biofilm requires imaging methods that show the most detailed ultrastructural features of the biofilm. In this kind of research, the use of scanning electron microscopy with customized protocols such as osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA) staining, and ionic liquid (IL) treatment is unrivalled for its image quality, magnification, resolution, minimal sample loss, and actual sample structure preservation. The combined use of innovative SEM protocols and 3-D image analysis software will allow for quantitative data from SEM images to be extracted; in this way, data from images of samples that have undergone different antibiofilm treatments can be compared.


Langmuir ◽  
2020 ◽  
Vol 36 (11) ◽  
pp. 2816-2822 ◽  
Author(s):  
Takashi Kakubo ◽  
Katsunori Shimizu ◽  
Akemi Kumagai ◽  
Hiroaki Matsumoto ◽  
Miki Tsuchiya ◽  
...  

2014 ◽  
Vol 254 (3) ◽  
pp. 109-114 ◽  
Author(s):  
C. KIZILYAPRAK ◽  
J. DARASPE ◽  
B.M. HUMBEL

2018 ◽  
Vol 24 (S1) ◽  
pp. 1444-1445 ◽  
Author(s):  
Kenneth J. Hayworth ◽  
David Peale ◽  
Zhiyuan Lu ◽  
C. Shan Xu ◽  
Harald F. Hess

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57405 ◽  
Author(s):  
Bohumil Maco ◽  
Anthony Holtmaat ◽  
Marco Cantoni ◽  
Anna Kreshuk ◽  
Christoph N. Straehle ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Julian Hennies ◽  
José Miguel Serra Lleti ◽  
Nicole L. Schieber ◽  
Rachel M. Templin ◽  
Anna M. Steyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document