New detection system for HAADE and holography in STEM

Author(s):  
Marian Mankos ◽  
Shi Yao Wang ◽  
J.K. Weiss ◽  
J.M. Cowley

A novel detection system has been designed and realized experimentally on the HB5 STEM instrument. Shadow images, diffraction patterns as well as high-angle annular dark field and bright field images are observed simultaneously with high efficiency using CCD and TV cameras. The microscope can be operated in a wide range of instrument modes which includes the implementation of new techniques for high resolution imaging.As shown in Fig. 1, the detection system has three triple choice stages. Diffracted beams can be collected by three P47 fast phosphor annular detectors inclined at 45 degree to the axis and having different inner and outer acceptance angles, which can be adjusted by the postspecimen lenses. The detector is observed through a window by a photomultiplier. The annular detectors have been used also for a new bright field STEM technique which utilizes the inner rim of the detectors to collect only the outermost annular part of the central beam and promises an improvement in resolution by a factor of about 1.6. Initial results show some promise (Fig. 2). The transmitted beam is then converted into a light signal in YAG and P47 detectors; optionally the central part of the beam can be detected in the EELS spectrometer. The generated light signal is reflected through a system of mirrors, exits the vacuum chamber and is collected with high efficiency by high aperture optical lenses.

Author(s):  
J.M. Cowley

The HB5 STEM instrument at ASU has been modified previously to include an efficient two-dimensional detector incorporating an optical analyser device and also a digital system for the recording of multiple images. The detector system was built to explore a wide range of possibilities including in-line electron holography, the observation and recording of diffraction patterns from very small specimen regions (having diameters as small as 3Å) and the formation of both bright field and dark field images by detection of various portions of the diffraction pattern. Experience in the use of this system has shown that sane of its capabilities are unique and valuable. For other purposes it appears that, while the principles of the operational modes may be verified, the practical applications are limited by the details of the initial design.


Author(s):  
R.F. Egerton ◽  
M. Misra

So-called "atomic-number contrast" is obtained in STEM by displaying a ratio signal formed by dividing the annular-dark-field signal Iad by the inelastic component Ii of the bright-field intensity (isolated by means of an electron spectrometer; see Fig. 1). Originally used for single-atom imaging, the technique has more recently been applied to polymer samples and biological tissue.We report here estimates of the ratio signal from organic specimens, based on the following assumptions:(1) That the specimen is amorphous and that phase contrast may be neglected for the electron-optical conditions and specimen features being considered; (2) That atomic cross sections may be used to estimate the amount of elastic and inelastic scattering. Modern calculations differ from simple Lenz theory in predicting that the cross section is not a smoothly-increasing function of atomic number (see Fig. 2), particularly for the 1ighter elements. (3) We assume a slightly idealized detection system in which all elastically scattered electrons contribute to Iad, while all electrons which have been inelastically (but not elastically) scattered contribute to Ii.


Author(s):  
P. Humble

There has been sustained interest over the last few years into both the intrinsic (primary and secondary) structure of grain boundaries and the extrinsic structure e.g. the interaction of matrix dislocations with the boundary. Most of the investigations carried out by electron microscopy have involved only the use of information contained in the transmitted image (bright field, dark field, weak beam etc.). Whilst these imaging modes are appropriate to the cases of relatively coarse intrinsic or extrinsic grain boundary dislocation structures, it is apparent that in principle (and indeed in practice, e.g. (1)-(3)) the diffraction patterns from the boundary can give extra independent information about the fine scale periodic intrinsic structure of the boundary.In this paper I shall describe one investigation into each type of structure using the appropriate method of obtaining the necessary information which has been carried out recently at Tribophysics.


Author(s):  
E D Boyes ◽  
L Hanna

A VG HB501 FEG STEM has been modified to provide track whilst tilt [TWIT] facilities for controllably tilting selected and initially randomly aligned nanometer-sized particles into the high symmetry zone-axis orientations required for microdiffraction, lattice imaging and chemical microanalysis at the unit cell level. New electronics display in alternate TV fields and effectively in parallel on split [+VTR] or adjacent externally synchronized screens, the micro-diffraction pattern from a selected area down to <1nm2 in size, together with the bright field and high angle annular dark field [HADF] STEM images of a much wider [˜1μm] area centered on the same spot. The new system makes it possible to tilt each selected and initially randomly aligned small particle into a zone axis orientation for microdiffraction, or away from it to minimize orientation effects in chemical microanalysis. Tracking of the inevitable specimen movement with tilt is controlled by the operator, with realtime [60Hz] update of the target designation in real space and the diffraction data in reciprocal space. The spot mode micro-DP and images of the surrounding area are displayed continuously. The regular motorized goniometer stage for the HB501STEM is a top entry design but the new control facilities are almost equivalent to having a stage which is eucentric with nanometric precision about both tilt axes.


2010 ◽  
Vol 111 (1) ◽  
pp. 20-26 ◽  
Author(s):  
K. Mitsuishi ◽  
A. Hashimoto ◽  
M. Takeguchi ◽  
M. Shimojo ◽  
K. Ishizuka

1994 ◽  
Vol 2 (5) ◽  
pp. 24-25
Author(s):  
Anthony D. Buonaquisit

We are all familiar with digital imaging for SEM instruments. Digital Imaging for TEM applications is not as well established. Nevertheless, it seems clear that it will not be long before digital imaging for TEM becomes common place. Systems are improving and costs are plummeting. With this in mind it is timely to review what digital imaging for TEM involves.In normal TEM operation an electron bream is scattered through a thin section of a sample. Physical mechanisms cause the electrons of the beam to scatter, producing bright-field images, dark-field images and diffraction patterns. The operator adjusts the instrument to display one of these images on the instrument's viewing screen. A photographic record is collected by flipping the viewing screen and exposing a sheet of film held in the TEM's camera. Exposed negatives can be removed for developing and printing in batches, using standard darkroom techniques.


1997 ◽  
Vol 12 (10) ◽  
pp. 2617-2622 ◽  
Author(s):  
Mehmet A. Akbas ◽  
Peter K. Davies

Using a processing route that employed platinum crucibles, single phase ceramics of Pb(Mg1/3Ta2/3)O3 (PMT) relaxor ferroelectrics were prepared with densities greater than 95% of their theoretical value. The improvements in the sintering characteristics of this system that result from this route were reflected by the dielectric properties, at 182 K, which are similar to those reported for single crystal PMT. Contrast originating from nanosized polar clusters was evident in dark-field TEM images collected from the PMT ceramics at room temperature and showed little change upon cooling through the permittivity maximum. The electron diffraction patterns contained weak superlattice reflections at (h ± 1/2, k ± 1/2, l ± 1/2) that originate from a 1: 1 ordering of the B-site cations. High resolution imaging indicated that the length scale of the chemical ordering in PMT is essentially identical to niobate relaxors such as PMN, with the 1–2 nm ordered domains being surrounded by a disordered matrix.


2010 ◽  
Vol 44 (1) ◽  
pp. 111-121 ◽  
Author(s):  
K. Z. Baba-Kishi

Electron diffraction patterns recorded using a scanning transmission electron microscope (STEM) from PbMg1/3Nb2/3O3(PMN) crystallites and PbZn1/3Nb2/3O3(PZN) crystals show weak and systematic continuous diffuse streaking along the 〈110〉 directions. Detailed high-angle annular dark-field (HAADF) images recordedviaan aberration-corrected STEM show that theB-site cations in PMN and PZN undergo correlated and long-range displacements towards the Pb2+ions on the (110) planes. The planarB-site displacement measured from the centres of the octahedra is about 0.3–0.5 Å in PMN and about 0.20–0.4 Å in PZN. In the HAADF images of the PMN crystallites and PZN crystals studied, there is insufficient evidence for systematic long-range planar displacements of the Pb2+ions. The observed Pb2+ion displacements in PMN and PZN appear randomly distributed, mostly displaced along 〈110〉 towards theB-site columns. There is also evidence of possible stress-related distortion in certain unit cells of PMN. In the relaxors studied, two distinct types of displacements were observed: one is the long-range planarB-site spatial displacement on the (110) planes, correlated with the Pb2+ions, possibly resulting in the observed diffuse streaking; the other is short-range Pb2+ion displacement on the (110) planes. The observed displacement status indicates a mutual attraction between the Pb ions and theB-site cations in which theBsites undergo the largest spatial displacements towards the Pb ions along 〈110〉.


1994 ◽  
Vol 332 ◽  
Author(s):  
Sean Hillyard ◽  
John Silcox

ABSTRACTAnnular dark field scanning transmission electron microscopy (ADF STEM) is chemically sensitive at high spatial resolution (e.g., 1.8ë at 100keV). Images can be digitally acquired and recorded, permitting quantitative analysis. It is particularly powerful when used in combination with complementary analysis modes such as x-ray microanalysis and transmission electron energy loss spectroscopy. Critical to the interpretation of these data is an understanding and determination of the electron probe intensity, shape and propagation characteristics inside the specimen. Quantitative measurements of diffraction patterns and images in comparison with computer-based simulations (including phonon scattering) provide a basis for developing that information. Results of a series of studies are reviewed that address questions such as defocus and other instrumental factors, and also the formation of channeling peaks that appear on the atomic columns along zone axes. For example, along Si(100) a peak forms and penetrates over 500ë whereas along Ge(100) it developes rapidly but disappears in less than 200ë. In higher atomic number elements, the penetration is even less (e.g. 1 O0ë for In).


2010 ◽  
Vol 17 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jinwoo Hwang ◽  
P.M. Voyles

AbstractWe report variable resolution fluctuation electron microscopy (VRFEM) measurements on Cu64.5Zr35.5metallic glass acquired using scanning transmission electron microscopy nanodiffraction using coherent probes 0.8 to 11 nm in diameter. The VRFEM results show that medium range atomic order structure of Cu64.5Zr35.5bulk metallic glass at the ∼1 nm scale has large fluctuations, but the structure becomes almost completely homogeneous at the 11 nm scale. We show that our experimental VRFEM data are consistent with two different models, the pair persistent model and the amorphous/nanocrystal composite model. We also report a new way to filter VRFEM data to eliminate the effect of specimen thickness gradient using high-angle annular dark field images as references.


Sign in / Sign up

Export Citation Format

Share Document