A Study on the Occurrence of Gold in Unoxidized Carlin-Type Ores in China Using AEM, SEM-EDX and SXRF

Author(s):  
Liu Yongkang ◽  
Liu Shirong ◽  
Wan Guangquan ◽  
Zhou Lindi ◽  
Li Jilian ◽  
...  

The knowledge about the occurrence of gold is essential both to the explanation for the genesis of gold mineralization in its deposits and to the evaluation and exploration or even smelt process of its ores. It has been well known that the gold occurrence in the Carlin-type ores still remains a difficult question to be answered because of the tiny scale of its locality and its very low content.This paper reports the results of our analysis on some gold bearing minerals in the Carlin-type ores discovered during recent years in China with combined use of analytical electron microscopy (AEM), scanning electron microscopy-energy dispersive X ray spectrometry (SEM-EDX) and synchrotron X ray flourescence analysis (SXRF) techniques as following:(1) Some gold occurred as submicron size grains in the ores (see Photo 1-4 and Figure 1-3) with grain size generally less than 0.2 micron.(2) It has been found by AEM and SEM-EDX observation and SXRF analysis that gold occurred as micrograins embedded in the boundaries of clay or quartz minerals rather than, as said, entered the lattice or adhered as a covering film to the surface of clay minerals (see Figure 4).

Author(s):  
Charles E. Lyman ◽  
Joseph I. Goldstein ◽  
Alton D. Romig ◽  
Patrick Echlin ◽  
David C. Joy ◽  
...  

Author(s):  
R.G. Frederickson ◽  
R.G. Ulrich ◽  
J.L. Culberson

Metallic cobalt acts as an epileptogenic agent when placed on the brain surface of some experimental animals. The mechanism by which this substance produces abnormal neuronal discharge is unknown. One potentially useful approach to this problem is to study the cellular and extracellular distribution of elemental cobalt in the meninges and adjacent cerebral cortex. Since it is possible to demonstrate the morphological localization and distribution of heavy metals, such as cobalt, by correlative x-ray analysis and electron microscopy (i.e., by AEM), we are using AEM to locate and identify elemental cobalt in phagocytic meningeal cells of young 80-day postnatal opossums following a subdural injection of cobalt particles.


Author(s):  
M. Tamizifar ◽  
G. Cliff ◽  
R.W. Devenish ◽  
G.W. Lorimer

Small additions of copper, <1 wt%, have a pronounced effect on the ageing response of Al-Mg-Si alloys. The object of the present investigation was to study the effect of additions of copper up to 0.5 wt% on the ageing response of a series of Al-Mg-Si alloys and to use high resolution analytical electron microscopy to determine the composition of the age hardening precipitates.The composition of the alloys investigated is given in Table 1. The alloys were heat treated in an argon atmosphere for 30m, water quenched and immediately aged either at 180°C for 15 h or given a duplex treatment of 180°C for 15 h followed by 350°C for 2 h2. The double-ageing treatment was similar to that carried out by Dumolt et al. Analyses of the precipitation were carried out with a HB 501 Scanning Transmission Electron Microscope. X-ray peak integrals were converted into weight fractions using the ratio technique of Cliff and Lorimer.


1982 ◽  
Vol 30 (5) ◽  
pp. 481-486 ◽  
Author(s):  
R E McClung ◽  
J Wood

Analytical electron microscopy was used to determine the quantitative effects of paraformaldehyde pretreatment on the formation of the biogenic amine-glutaraldehyde-chrome complex. Pretreatment with paraformaldehyde prevented the glutaraldehyde-chrome reaction with norepinephrine in the rat adrenal medulla. In contrast to the effect of paraformaldehyde on norepinephrine, pretreatment did not prevent the chrome reaction in serotonin-containing argentaffin cells of the gut. X-Ray energy spectrographic analysis revealed a significant decrease in chrome content in the paraformaldehyde treated tissue, but sufficient chrome did react to produce an electron-dense product. Thus by treating tissue with paraformaldehyde prior to the glutaraldehyde chrome procedure, serotonergic sites may be differentiated from catecholaminergic areas at the electron microscopic level.


2018 ◽  
Vol 38 (7) ◽  
pp. 641-647
Author(s):  
Jean Aimé Mbey ◽  
Fabien Thomas ◽  
Sandrine Hoppe

Abstract In the present study, a combined use of photonic microscopy, scanning electron microscopy and 3D X-ray tomography is carried out in order to analyze the dispersion and the distribution of raw and dimethyl sulfoxide (DMSO)-intercalated kaolinite used as filler in cassava starch-based films. It is shown that the association of these techniques allows a valuable analysis of clay dispersion in polymer-clay composite films. In the case of kaolinite-starch composite films on which this study is focused, it is obvious that previous intercalation of kaolinite with DMSO is an efficient way to improve dispersion and distribution of kaolinite in a starch polymer matrix.


Clay Minerals ◽  
2001 ◽  
Vol 36 (3) ◽  
pp. 307-324 ◽  
Author(s):  
M. D. Ruiz Cruz

AbstractMixed-layered phyllosilicates with composition intermediate between mica and chlorite were identified in very low-grade metaclastites from the Malàguide Complex (Betic Cordilleras, Spain), and studied by X-ray diffraction, and transmission and analytical electron microscopy. They occur both as small grains in the rock matrix, and associated with muscovitechlorite stacks. Transmission electron microscope observations revealed a transition from chlorite to ordered 1:1 interstratifications through complex 1:2 and 1:3 interstratifications. Analytical electron microscopy data indicate a composition slightly different from the sum of discrete trioctahedral chlorite and dioctahedral mica. The types of layer transitions suggest that mixed-layer formation included two main processes: (1) the replacement of a brucite sheet by a cation sheet in the chlorite structure; and (2) the precipitation of mica-like layers between the chlorite layers. The strongest diffraction lines in oriented X-ray patterns are: 12.60 Å (002), 7.98 Å (003), 4.82 Å (005) and 3.48 Å (007).


1979 ◽  
Vol 43 (327) ◽  
pp. 333-336 ◽  
Author(s):  
E. E. Lachowski ◽  
L. W. Murray ◽  
H. F. W. Taylor

SummaryEleven specimens of natural or synthetic truscottite or gyrolite-truscottite intergrowth were studied by analytical electron microscopy and X-ray powder diffraction. The results suggest that, in absence of substitution, the formula of truscottite is Ca14 (Si24O58)(OH)8 · ∼ 2H2O. Truscottite can accommodate Al and K in absence of each other to the extents of 1.4 atoms of Al or 0.5 atoms of K in the above formula. Substitution of Al causes a small increase in cell dimensions, which can approach those of reyerite, but substitution of K has negligible effect.


Sign in / Sign up

Export Citation Format

Share Document