A microdiffraction study of Os10C(Co)24-2 in the Scanning Transmission Electron Microscope

Author(s):  
M. E. Mochel ◽  
R. I. Masel ◽  
J. M. Mochel

Recent papers have discussed some of the difficulties in determining the structure of very small (<10Å) metal particles using electron microscopy. One of the ideas in the literature is that electron diffraction could provide structural information even under conditions where imaging is difficult. The purpose of the work reported here is to demonstrate that one can use electron diffraction techniques to obtain structural information about small metal particles, in this case 5Å osmium particles on a carbon film.

Author(s):  
H. Koike ◽  
S. Sakurai ◽  
K. Ueno ◽  
M. Watanabe

In recent years, there has been increasing demand for higher voltage SEMs, in the field of surface observation, especially that of magnetic domains, dislocations, and electron channeling patterns by backscattered electron microscopy. On the other hand, the resolution of the CTEM has now reached 1 ∼ 2Å, and several reports have recently been made on the observation of atom images, indicating that the ultimate goal of morphological observation has beem nearly achieved.


2019 ◽  
Author(s):  
Robert Bücker ◽  
Pascal Hogan-Lamarre ◽  
Pedram Mehrabi ◽  
Eike C. Schulz ◽  
Lindsey A. Bultema ◽  
...  

AbstractSerial X-ray crystallography at free-electron lasers allows to solve biomolecular structures from sub-micron-sized crystals. However, beam time at these facilities is scarce, and involved sample delivery techniques are required. On the other hand, rotation electron diffraction (MicroED) has shown great potential as an alternative means for protein nano-crystallography. Here, we present a method for serial electron diffraction of protein nanocrystals combining the benefits of both approaches. In a scanning transmission electron microscope, crystals randomly dispersed on a sample grid are automatically mapped, and a diffraction pattern at fixed orientation is recorded from each at a high acquisition rate. Dose fractionation ensures minimal radiation damage effects. We demonstrate the method by solving the structure of granulovirus occlusion bodies and lysozyme to resolutions of 1.55 Å and 1.80 Å, respectively. Our method promises to provide rapid structure determination for many classes of materials with minimal sample consumption, using readily available instrumentation.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1171-1172 ◽  
Author(s):  
Ondrej L. Krivanek ◽  
Niklas Dellby ◽  
Andrew J. Spence ◽  
Roger A. Camps ◽  
L. Michael Brown

Aberration correction in electron microscopy is a subject with a 60 year history dating back to the fundamental work of Scherzer. There have been several partial successes, such as Deltrap's spherical aberration (Cs) corrector which nulled Cs over 30 years ago. However, the practical goal of attaining better resolution than the best uncorrected microscope operating at the same voltage remains to be fulfilled. Combining well-known electron-optical principles with stable electronics, versatile computer control, and software able to diagnose and correct aberrations on-line is at last bringing this goal within reach.We are building a quadrupole-octupole Cs corrector with automated aberration diagnosis for a VG HB5 dedicated scanning transmission electron microscope (STEM). A STEM with no spherical aberration will produce a smaller probe size with a given beam current than an uncorrected STEM, and a larger beam current in a given size probe.


Author(s):  
M.E. Mochel ◽  
C. J. Humphreys ◽  
J. M. Mochel ◽  
J. A. Eades

Holes 20 Å in diameter and fine lines 20 Å wide can be cut in the metal-β-aluminas using the 10 Å electron beam of the Vacuum Generators, HB5 scanning transmission electron microscope. The minimum current density required for cutting was 103 amp/cm2. Electron energies of 40,60,80,100 keV were used.This technique has higher resolution than current lithography methods and is direct, requiring no chemical development. The width of isolated lines made on solid substrates is currently about .1μm (Ahmed and McMahon, 1981) and .03μm (Jackel et al., 1980). M. Isaacson and A. Murry have carried out electron beam writing on NaCl crystals supported on a carbon film on the scale we report here.In our case uniform 20Å holes and lines can be cut through self-supporting 1000A thick slabs of sodium-β-alumina to provide very high electron contrast. Once cut, the β-aluminas are stable and will tolerate exposure to air without degradation of the electron cut patterns. They may be used directly as masks (eg. for ion implantation). We believe they could be cut on the substrate with no damage to the underlying material.


Author(s):  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

A number of studies of single atom image observation utilizing either scanning transmission electron microscope ( STEM ) or conventional electron microscope ( OEM ) have been reported. For this purpose, the dark field image observation seems more promising because the scattering cross-section of an atom is extremely small. Much attention has been paid to decreasing background noises resulting from the supporting film. A thin amorphous carbon film is often utilized as a supporting film. However, many high contrast spots appear even in the dark field image when OEM is used. Matsuda and Nagata3 applied an incoherent illumination technique to the bright field image observation of OEM, and succeeded, in removing the phase contrast effects from the image.


Author(s):  
Sooho Kim

Automotive catalysts have a general loss of activity during aging, basically due to two principal deactivation mechanisms. One of them is thermally induced “sintering,” which results in catalytic surface area reduction. The other is chemically induced “poisoning,” which in part causes blockage of active metal sites. The conventional bulk techniques have indicated that various catalyst functions were affected differently by poisons and thermal damage; however, they generally did not provide detailed descriptions of the mechanisms of deactivation. Only analytical electron microscopy (AEM) can provide microchemical and microstructural information to gain a more thorough and fundamental understanding of catalytic deactivation.Fresh and vehicle-aged commercial automotive catalysts containing Pt, Pd, and Rh on alumina supports were prepared for AEM by a microtomy technique, which retains the spatial integrity of the catalyst pellet with uniform thickness. Then these AEM specimens were characterized in a transmission electron microscope (TEM) and in a dedicated scanning transmission electron microscope (STEM).


Sign in / Sign up

Export Citation Format

Share Document