scholarly journals Serial protein crystallography in an electron microscope

2019 ◽  
Author(s):  
Robert Bücker ◽  
Pascal Hogan-Lamarre ◽  
Pedram Mehrabi ◽  
Eike C. Schulz ◽  
Lindsey A. Bultema ◽  
...  

AbstractSerial X-ray crystallography at free-electron lasers allows to solve biomolecular structures from sub-micron-sized crystals. However, beam time at these facilities is scarce, and involved sample delivery techniques are required. On the other hand, rotation electron diffraction (MicroED) has shown great potential as an alternative means for protein nano-crystallography. Here, we present a method for serial electron diffraction of protein nanocrystals combining the benefits of both approaches. In a scanning transmission electron microscope, crystals randomly dispersed on a sample grid are automatically mapped, and a diffraction pattern at fixed orientation is recorded from each at a high acquisition rate. Dose fractionation ensures minimal radiation damage effects. We demonstrate the method by solving the structure of granulovirus occlusion bodies and lysozyme to resolutions of 1.55 Å and 1.80 Å, respectively. Our method promises to provide rapid structure determination for many classes of materials with minimal sample consumption, using readily available instrumentation.

Author(s):  
M. E. Mochel ◽  
R. I. Masel ◽  
J. M. Mochel

Recent papers have discussed some of the difficulties in determining the structure of very small (<10Å) metal particles using electron microscopy. One of the ideas in the literature is that electron diffraction could provide structural information even under conditions where imaging is difficult. The purpose of the work reported here is to demonstrate that one can use electron diffraction techniques to obtain structural information about small metal particles, in this case 5Å osmium particles on a carbon film.


1997 ◽  
Vol 504 ◽  
Author(s):  
David C. Bell ◽  
Anthony J. Garratt-Reed ◽  
Linn W. Hobbst

ABSTRACTRadial density functions (RDFs) provide important information about short- and ntermediaterange structure of topologically-disordered materials such as glasses and irradiation-amorphized materials. We have determined RDFs for irradiation-amorphized SiO2, AIPO4 and SiC by energy-filtered electron diffraction methods in a field-emission scanning transmission electron microscope (FEG-STEM) equipped with a digital parallel-detection electron energy-loss spectrometer. Post-specimen rocking was used to minimize the effects of spherical aberration in the objective lens, which interfere with the acquisition of data collected by pre-specimen rocking. Useful energy-filtered data has been collected beyond an angular range defined by q = 2 sin(Θ/2)/λ = 25 nm−1


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
H. Koike ◽  
S. Sakurai ◽  
K. Ueno ◽  
M. Watanabe

In recent years, there has been increasing demand for higher voltage SEMs, in the field of surface observation, especially that of magnetic domains, dislocations, and electron channeling patterns by backscattered electron microscopy. On the other hand, the resolution of the CTEM has now reached 1 ∼ 2Å, and several reports have recently been made on the observation of atom images, indicating that the ultimate goal of morphological observation has beem nearly achieved.


Author(s):  
H. Rose

The scanning transmission electron microscope offers the possibility of utilizing inelastically scattered electrons. Use of these electrons in addition to the elastically scattered electrons should reduce the scanning time (dose) Which is necessary to keep the quantum noise below a certain level. Hence it should lower the radiation damage. For high resolution, Where the collection efficiency of elastically scattered electrons is small, the use of Inelastically scattered electrons should become more and more favorable because they can all be detected by means of a spectrometer. Unfortunately, the Inelastic scattering Is a non-localized interaction due to the electron-electron correlation, occurring predominantly at the circumference of the atomic electron cloud.


Author(s):  
J. R. Fields

The energy analysis of electrons scattered by a specimen in a scanning transmission electron microscope can improve contrast as well as aid in chemical identification. In so far as energy analysis is useful, one would like to be able to design a spectrometer which is tailored to his particular needs. In our own case, we require a spectrometer which will accept a parallel incident beam and which will focus the electrons in both the median and perpendicular planes. In addition, since we intend to follow the spectrometer by a detector array rather than a single energy selecting slit, we need as great a dispersion as possible. Therefore, we would like to follow our spectrometer by a magnifying lens. Consequently, the line along which electrons of varying energy are dispersed must be normal to the direction of the central ray at the spectrometer exit.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


Author(s):  
G. Botton ◽  
G. L’Espérance ◽  
M.D. Ball ◽  
C.E. Gallerneault

The recently developed parallel electron energy loss spectrometers (PEELS) have led to a significant reduction in spectrum acquisition time making EELS more useful in many applications in material science. Dwell times as short as 50 msec per spectrum with a PEELS coupled to a scanning transmission electron microscope (STEM), can make quantitative EEL images accessible. These images would present distribution of elements with the high spatial resolution inherent to EELS. The aim of this paper is to briefly investigate the effect of acquisition time per pixel on the signal to noise ratio (SNR), the effect of thickness variation and crystallography and finally the energy stability of spectra when acquired in the scanning mode during long periods of time.The configuration of the imaging system is the following: a Gatan PEELS is coupled to a CM30 (TEM/STEM) electron microscope, the control of the spectrometer and microscope is performed through a LINK AN10-85S MCA which is interfaced to a IBM RT 125 (running under AIX) via a DR11W line.


Author(s):  
D. R. Liu ◽  
D. B. Williams

The secondary electron imaging technique in a scanning electron microscope (SEM) has been used first by Millman et al. in 1987 to distinguish between the superconducting phase and the non-superconducting phase of the YBa2Cu3O7-x superconductors. They observed that, if the sample was cooled down below the transition temperature Tc and imaged with secondary electrons, some regions in the image would show dark contrast whereas others show bright contrast. In general, the contrast variation of a SEM image is the variation of the secondary electron yield over a specimen, which in turn results from the change of topography and conductivity over the specimen. Nevertheless, Millman et al. were able to demonstrate with their experimental results that the dominant contrast mechanism should be the conductivity variation and that the regions of dark contrast were the superconducting phase whereas the regions of bright contrast were the non-superconducting phase, because the latter was a poor conductor and consequently, the charge building-up resulted in high secondary electron emission. This observation has since aroused much interest amoung the people in electron microscopy and high Tc superconductivity. The present paper is the preliminary report of our attempt to carry out the secondary electron imaging of this material in a scanning transmission electron microscope (STEM) rather than in a SEM. The advantage of performing secondary electron imaging in a TEM is obvious that, in a TEM, the spatial resolution is higher and many more complementary techniques, e.g, diffraction contrast imaging, phase contrast imaging, electron diffraction and various microanalysis techniques, are available.


Sign in / Sign up

Export Citation Format

Share Document