A new method for determining sample thickness: A comparison to experimental results

Author(s):  
John Blackson ◽  
Suichu Luo ◽  
David C Joy

Sample thickness is an important parameter in quantitative electron microscopy,. Several methods for determining sample thickness have been described previously. A theoretical method presented here utilizes the low loss region of the electron energy loss spectrum to calculate sample thickness. The method avoids many of the limitations of other methods and is applicable to a wide variety of samples. The method is compared to film thicknesses determined experimentally as described below.Chromium films were deposited simultaneously onto collodion supported TEM grids and cured epoxy blanks using a Denton Hi Res 100 coater equipped with a Syton quartz crystal monitor. The cured epoxy blanks were covered with a layer of unpolymerized epoxy that was then cured. The chromium sandwich was cross sectioned using ultramicrotomy techniques employing a diamond knife. Sections were produced which were as thin as possible (<50 nm) to minimize measurement errors. Chromium film thickness was determined directly using transmission electron microscopy (Fig. 1).

Author(s):  
W. Heckmann

Transmission electron microscopy has changed from a purely imaging method to an analytical method. This has been facilitated particularly by equipping electron microscopes with energy filters and with parallel electron energy loss spectrometers (PEELS). Because of their relatively high energy resolution (1 to 2 eV) they provide information not only on the elements present but also on the type of bonds between the molecular groups. Polymers are radiation sensitive and the molecular bonds change as the spectrum is being recorded. This can be observed with PEEL spectrometers that are able to record spectra with high sensitivity and in rapid succession.A PEEL spectrum can be divided into a low loss range and an inner shell loss range of higher energy. The low loss spectra of polymers always show a broad peak at about 22 eV and a further peak at 7 eV, if aromatic groups are present, as is the case with PS (Fig. 1). In the course of exposure, the intensity of this peak decreases, a sign that the benzene ring is destroyed by the radiation (Fig. 2).


Author(s):  
J. Bentley ◽  
E. A. Kenik ◽  
K. Siangchaew ◽  
M. Libera

Quantitative elemental mapping by inner shell core-loss energy-filtered transmission electron microscopy (TEM) with a Gatan Imaging Filter (GIF) interfaced to a Philips CM30 TEM operated with a LaB6 filament at 300 kV has been applied to interfaces in a range of materials. Typically, 15s exposures, slit width Δ = 30 eV, TEM magnifications ∼2000 to 5000×, and probe currents ≥200 nA, were used. Net core-loss maps were produced by AE−r background extrapolation from two pre-edge windows. Zero-loss I0 (Δ ≈ 5 eV) and “total” intensity IT (unfiltered, no slit) images were used to produce maps of t/λ = ln(IT/I0), where λ is the total inelastic mean free path. Core-loss images were corrected for diffraction contrast by normalization with low-loss images recorded with the same slit width, and for changes in thickness by normalization with t/λ, maps. Such corrected images have intensities proportional to the concentration in atoms per unit volume. Jump-ratio images (post-edge divided by pre-edge) were also produced. Spectrum lines across planar interfaces were recorded with TEM illumination by operating the GIF in the spectroscopy mode with an area-selecting slit oriented normal to the energy-dispersion direction. Planar interfaces were oriented normal to the area-selecting slit with a specimen rotation holder.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


2019 ◽  
Vol 21 (3) ◽  
pp. 227 ◽  
Author(s):  
P.J.F. Harris

Non-graphitizing carbon, or char, has been intensively studied for decades, but there is still no agreement about its detailed atomic structure. The first models for graphitizing and non-graphitizing carbons were proposed by Rosalind Franklin in the early 1950s, and while these are correct in a broad sense, they are incomplete. Subsequent models also fail to explain fully the structure of non-graphitizing carbons. The discovery of the fullerenes and related structures stimulated the present author and others to put forward models which incorporate non-hexagonal rings into hexagonally-bonded sp2 carbon networks, creating a microporous structure made up of highly curved fragments. However, this model has not been universally accepted. This paper reviews the models that have been put forward for non-graphitizing carbon and outlines the evidence for a fullerene-like structure. This evidence comes from transmission electron microscopy, electron energy loss spectroscopy and Raman spectroscopy. Finally, the influence of precursor chemistry on the structure of graphitizing and non-graphitizing carbons is discussed. It is well established that carbonization of oxygen–containing precursors tends to produce non-graphitizing carbons. This may be explained by the fact that the removal of oxygen from a hexagonal carbon network can result in the formation of pentagonal carbon rings.


2000 ◽  
Vol 6 (S2) ◽  
pp. 208-209
Author(s):  
Huifang Xu ◽  
Pingqiu Fu

Laihunite that has distorted olivine-type structure with ferric and ferrous irons and ordered distribution of vacancies was first discovered in a high-grade metamorphosed banded iron formation (BIF) [1, 2]. The laihunite coexisting with fayalite (Fe-olivine), magnetite, quartz, ferrosilite, garnet and hedenbergite, formed in the process of oxidation of fayalite [2, 3]. The structure refinement of 1-layer laihunite shows P21/b symmetry and ordered distribution of vacancies in half M1 sites of olivine structure [2, 3]. Early high-resolution transmission electron microscopy (HRTEM) study and HRTEM image simulation of the 1-layer laihunite verified the structure refinement [4].Specimens of weakly oxidized fayalite and laihunite containing fayalite islands collected from Xiaolaihe and Menjiagou of Liaoning Province, NE China, have been studied using selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy (EELS), and X-ray energy-dispersive spectroscopy.


2005 ◽  
Vol 61 (1) ◽  
pp. 11-16 ◽  
Author(s):  
E. A. Juarez-Arellano ◽  
J. M. Ochoa ◽  
L. Bucio ◽  
J. Reyes-Gasga ◽  
E. Orozco

Single microcrystals of the new compound samarium dimanganese germanium oxide, SmMn2GeO7, were grown using the flux method in a double spherical mirror furnace (DSMF). The micrometric crystals were observed and chemically analysed with scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDX). The structural characterization and chemical analysis of these crystals were also carried out using transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), together with electron-energy-loss spectroscopy (EELS). We found that the new quaternary compound crystallizes in the orthorhombic system with the point group mmm (D 2h ), space group Immm (No. 71) and cell parameters a = 8.30 (10), b = 8.18 (10), c = 8.22 (10) Å and V = 558.76 Å3.


Sign in / Sign up

Export Citation Format

Share Document