Electron Microscopy in the diagnosis of lysosomal storage diseases

Author(s):  
Carole Vogler ◽  
Harvey S. Rosenberg

Diagnostic procedures for evaluation of patients with lysosomal storage diseases (LSD) seek to identify a deficiency of a responsible lysosomal enzyme or accumulation of a substance that requires the missing enzyme for degradation. Most patients with LSD have progressive neurological degeneration and may have a variety of musculoskeletal and visceral abnormalities. In the LSD, the abnormally diminished lysosomal enzyme results in accumulation of unmetabolized catabolites in distended lysosomes. Because of the subcellular morphology and size of lysosomes, electron microscopy is an ideal tool to study tissue from patients with suspected LSD. In patients with LSD all cells lack the specific lysosomal enzyme but the distribution of storage material is dependent on the extent of catabolism of the substrate in each cell type under normal circumstances. Lysosmal storages diseases affect many cell types and tissues. Storage material though does not accumulate in all tissues and cell types and may be different biochemically and morphologically in different tissues.Conjunctiva, skin, rectal mucosa and peripheral blood leukocytes may show ultrastructural evidence of lysosomal storage even in the absence of clinical findings and thus any of these tissues can be used for ultrastructural examination in the diagnostic evaluation of patients with suspected LSD. Biopsy of skin and conjunctiva are easily obtained and provide multiple cell types including endothelium, epithelium, fibroblasts and nerves for ultrastructural study. Fibroblasts from skin and conjunctiva can also be utilized for the initiation of tissue cultures for chemical assays. Brain biopsy has been largely replaced by biopsy of more readily obtained tissue and by biochemical assays. Such assays though may give equivical or nondiagnostic results and in some lysosomal storage diseases an enzyme defect has not yet been identified and diagnoses can be made only by ultrastructural examination.

2017 ◽  
Vol 51 (3) ◽  
Author(s):  
Mary Ann R. Abacan ◽  
Mary Anne D. Chiong

Gaucher disease is the most common of the lysosomal storage diseases caused by a defect in the lysosomal enzyme βglucocererbrosidase resulting in multi-organ involvement. The presence of cholelithiasis has been rarely observed among patients with non-neuronopathic type of Gaucher disease and the exact pathophysiology is still unknown. We report a Filipino child with chronic neuronopathic Gaucher Disease noted to have cholelithiasis on routine whole abdominal ultrasonography as part of the regular monitoring of the disease.


1987 ◽  
Vol 28 (S3) ◽  
pp. 243-255 ◽  
Author(s):  
Carole Vogler ◽  
Harvey S. Rosenberg ◽  
Julian C. Williams ◽  
Ian Butler ◽  
John M. Opitz ◽  
...  

2015 ◽  
Vol 9s2 ◽  
pp. JEN.S25475 ◽  
Author(s):  
Rob U. Onyenwoke ◽  
Jay E. Brenman

Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders.


Author(s):  
Stephen Waldek

Fabry disease is a rare X-linked disorder of glycosphingolipid metabolism caused by a deficiency of the lysosomal acid hydrolase enzyme, alpha-galactosidase A. The resulting accumulation of substrate, mostly globotriaosylceramide, leads to a progressive, multiorgan disease affecting predominantly the kidneys, skin, heart, and nervous system. It is one of over 50 lysosomal storage diseases. It is typically diagnosed in young men after many years of ‘acral pain’ syndrome, when the diagnosis is made through identification of characteristic abnormalities of skin, kidney or heart, or of other organs. Renal failure has been a common outcome. Females may also develop manifestations, usually later in life. Renal biopsy shows vacuoles/deposits in podocytes and other renal cell types with progressive scarring. The diagnosis can be made by measuring enzyme levels in men, or by genetic testing. This latter is the more reliable test in women. Fabry disease can now be treated where affordable by regular (every 2 weeks) intravenous infusions of recombinant preparations of the deficient enzyme. These are burdensome and expensive, but are transforming the outlook for the condition.


1980 ◽  
Vol 14 (11) ◽  
pp. 1199-1203 ◽  
Author(s):  
Ismo Virtanen ◽  
Peter Ekblom ◽  
Pekka Laurila ◽  
Stig Nordling ◽  
Kari O Raivio ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Muna Abed Rabbo ◽  
Yara Khodour ◽  
Laurie S. Kaguni ◽  
Johnny Stiban

AbstractJohann Ludwig Wilhelm Thudicum described sphingolipids (SLs) in the late nineteenth century, but it was only in the past fifty years that SL research surged in importance and applicability. Currently, sphingolipids and their metabolism are hotly debated topics in various biochemical fields. Similar to other macromolecular reactions, SL metabolism has important implications in health and disease in most cells. A plethora of SL-related genetic ailments has been described. Defects in SL catabolism can cause the accumulation of SLs, leading to many types of lysosomal storage diseases (LSDs) collectively called sphingolipidoses. These diseases mainly impact the neuronal and immune systems, but other systems can be affected as well. This review aims to present a comprehensive, up-to-date picture of the rapidly growing field of sphingolipid LSDs, their etiology, pathology, and potential therapeutic strategies. We first describe LSDs biochemically and briefly discuss their catabolism, followed by general aspects of the major diseases such as Gaucher, Krabbe, Fabry, and Farber among others. We conclude with an overview of the available and potential future therapies for many of the diseases. We strive to present the most important and recent findings from basic research and clinical applications, and to provide a valuable source for understanding these disorders.


Sign in / Sign up

Export Citation Format

Share Document