Development of chromaffin cells depends on MASH1 function

Development ◽  
2002 ◽  
Vol 129 (20) ◽  
pp. 4729-4738 ◽  
Author(s):  
Katrin Huber ◽  
Barbara Brühl ◽  
François Guillemot ◽  
Eric N. Olson ◽  
Uwe Ernsberger ◽  
...  

The sympathoadrenal (SA) cell lineage is a derivative of the neural crest (NC), which gives rise to sympathetic neurons and neuroendocrine chromaffin cells. Signals that are important for specification of these two types of cells are largely unknown. MASH1 plays an important role for neuronal as well as catecholaminergic differentiation. Mash1 knockout mice display severe deficits in sympathetic ganglia, yet their adrenal medulla has been reported to be largely normal suggesting that MASH1 is essential for neuronal but not for neuroendocrine differentiation. We show now that MASH1 function is necessary for the development of the vast majority of chromaffin cells. Most adrenal medullary cells in Mash1–/– mice identified by Phox2b immunoreactivity, lack the catecholaminergic marker tyrosine hydroxylase. Mash1 mutant and wild-type mice have almost identical numbers of Phox2b-positive cells in their adrenal glands at embryonic day (E) 13.5; however, only one-third of the Phox2b-positive adrenal cell population seen in Mash1+/+ mice is maintained in Mash1–/– mice at birth. Similar to Phox2b, cells expressing Phox2a and Hand2 (dHand) clearly outnumber TH-positive cells. Most cells in the adrenal medulla of Mash1–/– mice do not contain chromaffin granules, display a very immature, neuroblast-like phenotype, and, unlike wild-type adrenal chromaffin cells, show prolonged expression of neurofilament and Ret comparable with that observed in wild-type sympathetic ganglia. However, few chromaffin cells in Mash1–/– mice become PNMT positive and downregulate neurofilament and Ret expression. Together, these findings suggest that the development of chomaffin cells does depend on MASH1 function not only for catecholaminergic differentiation but also for general chromaffin cell differentiation.

1988 ◽  
Vol 116 (1) ◽  
pp. 149-NP ◽  
Author(s):  
M. Jousselin-Hosaja

ABSTRACT The effects of long-term transplantation on the ultrastructure of adrenaline- and noradrenaline-storing cells from the adrenal medulla were determined using morphometric methods. Mouse adrenal medulla were freed from the adrenal cortex and grafted into the occipital cortex of the brain. Two types of chromaffin cells were identified by electron microscopy in grafts fixed with glutaraldehyde and osmium tetroxide. Noradrenaline-type cells were predominant and formed 70–80% of the surviving population of grafted chromaffin cells. A minority of the chromaffin cells contained medium-sized granules (140–210 nm in diameter) (medium granule cell; MGC) with finely granular moderately electron dense cores. Morphometric analysis of noradrenaline phenotype cells and MGC cells in transplants showed no significant differences compared with the noradrenaline-storing cells of normal adrenal glands. In contrast, noradrenaline-type cells and MGC cells in the grafts had areas of secretory vesicles which were significantly (P<0·01) larger and areas of rough endoplasmic reticulum which were significantly (P<0 ·01) smaller than those of the adrenaline-storing cells of normal adrenal glands. It was concluded that long-term transplantation caused no degenerative changes in the ultrastructure of mouse adrenal chromaffin cells. J. Endocr. (1988) 116, 149–153


Endocrinology ◽  
2014 ◽  
Vol 155 (1) ◽  
pp. 180-192 ◽  
Author(s):  
Mark K. Lukewich ◽  
Alan E. Lomax

Enhanced epinephrine secretion from adrenal chromaffin cells (ACCs) is an important homeostatic response to severe systemic inflammation during sepsis. Evidence suggests that increased activation of ACCs by preganglionic sympathetic neurons and direct alterations in ACC function contribute to this response. However, the direct effects of sepsis on ACC function have yet to be characterized. We hypothesized that sepsis enhances epinephrine secretion from ACCs by increasing intracellular Ca2+ signaling. Plasma epinephrine concentration was increased 5-fold in the lipopolysaccharide-induced endotoxemia model of sepsis compared with saline-treated control mice. Endotoxemia significantly enhanced stimulus-evoked epinephrine secretion from isolated ACCs in vitro. Carbon fiber amperometry revealed an increase in the number of secretory events during endotoxemia, without significant changes in spike amplitude, half-width, or quantal content. ACCs isolated up to 12 hours after the induction of endotoxemia exhibited larger stimulus-evoked Ca2+ transients compared with controls. Similarly, ACCs from cecal ligation and puncture mice also exhibited enhanced Ca2+ signaling. Although sepsis did not significantly affect ACC excitability or voltage-gated Ca2+ currents, a 2-fold increase in caffeine (10 mM)-stimulated Ca2+ transients was observed during endotoxemia. Depletion of endoplasmic reticulum Ca2+ stores using cyclopiazonic acid (10 μM) abolished the effects of endotoxemia on catecholamine secretion from ACCs. These findings suggest that sepsis directly enhances catecholamine secretion from ACCs through an increase in Ca2+ release from the endoplasmic reticulum. These alterations in ACC function are likely to amplify the effects of increased preganglionic sympathetic neuron activity to further enhance epinephrine levels during sepsis.


2005 ◽  
Vol 186 (2) ◽  
pp. R1-R5 ◽  
Author(s):  
Damien J Keating ◽  
Chen Chen

Activin A is a member of the transforming growth factor-β family and has known roles in the adrenal cortex, from which activin A is secreted. We aimed to find whether activin A induces secretion of catecholamines from chromaffin cells of the adrenal medulla, which neighbours the adrenal cortex in vivo. Using carbon fibre amperometry, we were able to measure catecholamine secretion in real-time from single chromaffin cells dissociated from the rat adrenal medulla. Activin A stimulated catecholamine secretion in a rapid and dose-dependent manner from chromaffin cells. This effect was fully reversible upon washout of activin A. The minimum dose at which activin A had a maximal effect was 2 nM, with an EC50 of 1.1 nM. The degree of secretion induced by activin A (2 nM) was smaller than that due to membrane depolarization caused by an increase in the external K+ concentration from 5 to 70 mM. No response to activin A was seen when Ca2+ channels were blocked by Cd2+ (200 μM). We conclude from these findings that activin A is capable of stimulating a robust level of catecholamine secretion from adrenal chromaffin cells in a concentration-dependent manner. This occurs via the opening of voltage-gated Ca2+ channels, causing Ca2+ entry, thereby triggering exocytosis. These findings illustrate a new physiological role of activin A and a new mechanism in the control of catecholamine secretion from the adrenal medulla.


Author(s):  
Anna Gridina ◽  
Xiaoyu Su ◽  
Shakil A. Khan ◽  
Ying-Jie Peng ◽  
Benjamin L Wang ◽  
...  

Emerging evidence suggests that gaseous molecules, carbon monoxide (CO) and hydrogen sulfide (H2S) generated by heme oxygenase-(HO)-2 and cystathionine γ-lyase (CSE), respectively, function as transmitters in the nervous system. Present study examined the roles of CO and H2S in hypoxia-induced catecholamine (CA) release from adrenal medullary chromaffin cells (AMC). Studies were performed on AMC from adult (≥6 weeks of age) wild type (WT), HO-2 null, CSE null and HO-2/CSE double null mice of either gender. CA secretion was determined by carbon fiber amperometry and [Ca2+]i by microflurometry using Fura-2. HO-2- and CSE immunoreactivities were seen in WT AMC, which were absent in HO-2 and CSE null mice. Hypoxia (medium pO2 30-38 mmHg) evoked CA release and elevated [Ca2+]i. The magnitude of hypoxic response was greater in HO-2 null mice and in HO inhibitor treated WT AMC compared to controls. H2S levels were elevated in HO-2 null AMC. Either pharmacological inhibition or genetic deletion of CSE prevented the augmented hypoxic responses of HO-2 null AMC and H2S donor rescued AMC responses to hypoxia in HO-2/CSE double null mice. CORM-3, a CO donor, prevented the augmented hypoxic responses in WT and HO-2 null AMC. CO donor reduced H2S levels in WT AMC. The effects of CO donor were blocked by either ODQ or 8pCT, inhibitors of soluble guanylyl cyclase (SGC) or protein kinase G, respectively. These results suggest that HO-2-derived CO inhibits hypoxia-evoked CA secretion from adult murine AMC involving soluble guanylyl cyclase (SGC)-protein kinase G (PKG)-dependent regulation of CSE- derived H2S.


1990 ◽  
Vol 73 (3) ◽  
pp. 418-428 ◽  
Author(s):  
Jeffrey H. Kordower ◽  
Massimo S. Fiandaca ◽  
Mary F. D. Notter ◽  
John T. Hansen ◽  
Don M. Gash

✓ Autopsy results on patients and corresponding studies in nonhuman primates have revealed that autografts of adrenal medulla into the striatum, used as a treatment for Parkinson's disease, do not survive well. Because adrenal chromaffin cell viability may be limited by the low levels of available nerve growth factor (NGF) in the striatum, the present study was conducted to determine if transected peripheral nerve segments could provide sufficient levels of NGF to enhance chromaffin cell survival in vitro and in vivo. Aged female rhesus monkeys, rendered hemiparkinsonian by the drug MPTP (n-methyl-4-phenyl-1,2,3,6 tetrahydropyridine), received autografts into the striatum using a stereotactic approach, of either sural nerve or adrenal medulla, or cografts of adrenal medulla and sural nerve (three animals in each group). Cell cultures were established from tissue not used in the grafts. Adrenal chromaffin cells either cocultured with sural nerve segments or exposed to exogenous NGF differentiated into a neuronal phenotype. Chromaffin cell survival, when cografted with sural nerve into the striatum, was enhanced four- to eightfold from between 8000 and 18,000 surviving cells in grafts of adrenal tissue only up to 67,000 surviving chromaffin cells in cografts. In grafts of adrenal tissue only, the implant site consisted of an inflammatory focus. Surviving chromaffin cells, which could be identified by both chromogranin A and tyrosine hydroxylase staining, retained their endocrine phenotype. Cografted chromaffin cells exhibited multipolar neuritic processes and numerous chromaffin granules, and were also immunoreactive for tyrosine hydroxylase and chromogranin A. Blood vessels within the graft were fenestrated, indicating that the blood-brain barrier was not intact. Additionally, cografted chromaffin cells were observed in a postsynaptic relationship with axon terminals from an undetermined but presumably a host origin.


1986 ◽  
Vol 103 (5) ◽  
pp. 1991-1997 ◽  
Author(s):  
S Saadat ◽  
H Thoenen

As a first step towards the identification and purification of the molecule(s) that are involved in cell contact-mediated tyrosine hydroxylase (TH) induction in cultures of bovine adrenal chromaffin cells, we have prepared plasma membranes (PM) from bovine adrenal medulla and tested their ability to mimick cell contact-mediated TH induction in low density chromaffin cultures. PM indeed induced TH in a manner similar to that observed in high density cultures. The maximal TH induction reached by PM corresponded to 69% of that of high density cultures, and half-maximal TH induction was obtained with 12 micrograms of PM per ml of medium. The induction of TH by PM was blocked by alpha-amanitin as observed in high density cultures. Since acetylcholinesterase was neither induced in high density nor in PM-treated low density cultures, an induction of TH as a result of a general increase in protein synthesis was excluded. The cell contact molecule(s) appear to be intrinsic membrane proteins. They were not removed by high or low salt extraction, but solubilized by 50 mM octylglucoside. They were resistant to 0.1% trypsin and heat denaturation but inactivated by 0.01% chymotrypsin. PM isolated from the adrenal cortex, kidney, and liver also induced TH in low density chromaffin cell cultures, although to a smaller extent than PM of the adrenal medulla. In contrast, muscle and erythrocyte PM were inactive. This shows that the cell contact molecule(s) are not restricted to the adrenal medulla, but are also present in some other but not all tissues.


2015 ◽  
Vol 370 (1672) ◽  
pp. 20140188 ◽  
Author(s):  
Lin-Ling He ◽  
Quan-Feng Zhang ◽  
Lie-Cheng Wang ◽  
Jing-Xia Dai ◽  
Chang-He Wang ◽  
...  

Little is known about the interactions between nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs). Here we report that methacholine (MCh), a selective agonist of mAChRs, inhibited up to 80% of nicotine-induced nAChR currents in sympathetic superior cervical ganglion neurons and adrenal chromaffin cells. The muscarine-induced inhibition (MiI) substantially reduced ACh-induced membrane currents through nAChRs and quantal neurotransmitter release. The MiI was time- and temperature-dependent. The slow recovery of nAChR current after washout of MCh, as well as the high value of Q10 (3.2), suggested, instead of a direct open-channel blockade, an intracellular metabotropic process. The effects of GTP-γ-S, GDP-β-S and pertussis toxin suggested that MiI was mediated by G-protein signalling. Inhibitors of protein kinase C (bisindolymaleimide–Bis), protein kinase A (H89) and PIP2 depletion attenuated the MiI, indicating that a second messenger pathway is involved in this process. Taken together, these data suggest that mAChRs negatively modulated nAChRs via a G-protein-mediated second messenger pathway. The time dependence suggests that MiI may provide a novel mechanism for post-synaptic adaptation in all cells/neurons and synapses expressing both types of AChRs.


Sign in / Sign up

Export Citation Format

Share Document