The time course of calcium deposition in shells of the barnacle (Balanus amphititre amphititre) during cyprid-juvenile metamorphosis

Author(s):  
Nancy R. Wallace ◽  
Craig C. Freudenrich ◽  
Karl Wilbur ◽  
Peter Ingram ◽  
Ann LeFurgey

The morphology of balanomorph barnacles during metamorphosis from the cyprid larval stage to the juvenile has been examined by light microscopy and scanning electron microscopy (SEM). The free-swimming cyprid attaches to a substrate, rotates 90° in the vertical plane, molts, and assumes the adult shape. The resulting metamorph is clad in soft cuticle and has an adult-like appearance with a mantle cavity, thorax with cirri, and incipient shell plates. At some time during the development from cyprid to juvenile, the barnacle begins to mineralize its shell, but it is not known whether calcification occurs before, during, or after ecdysis. To examine this issue, electron probe x-ray microanalysis (EPXMA) was used to detect calcium in cyprids and juveniles at various times during metamorphosis.Laboratory-raised, free-swimming cyprid larvae were allowed to settle on plastic coverslips in culture dishes of seawater. The cyprids were observed with a dissecting microscope, cryopreserved in liquid nitrogen-cooled liquid propane at various times (0-24 h) during metamorphosis, freeze dried, rotary carbon-coated, and examined with scanning electron microscopy (SEM). EPXMA dot maps were obtained in parallel for qualitative assessment of calcium and other elements in the carapace, wall, and opercular plates.

Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
P. A. Madden ◽  
W. R. Anderson

The intestinal roundworm of swine is pinkish in color and about the diameter of a lead pencil. Adult worms, taken from parasitized swine, frequently were observed with macroscopic lesions on their cuticule. Those possessing such lesions were rinsed in distilled water, and cylindrical segments of the affected areas were removed. Some of the segments were fixed in buffered formalin before freeze-drying; others were freeze-dried immediately. Initially, specimens were quenched in liquid freon followed by immersion in liquid nitrogen. They were then placed in ampuoles in a freezer at −45C and sublimated by vacuum until dry. After the specimens appeared dry, the freezer was allowed to come to room temperature slowly while the vacuum was maintained. The dried specimens were attached to metal pegs with conductive silver paint and placed in a vacuum evaporator on a rotating tilting stage. They were then coated by evaporating an alloy of 20% palladium and 80% gold to a thickness of approximately 300 A°. The specimens were examined by secondary electron emmission in a scanning electron microscope.


1982 ◽  
Vol 46 (11) ◽  
pp. 2881-2883 ◽  
Author(s):  
Naofumi KITABATAKE ◽  
Hirotaka SASAKI ◽  
Etsushiro DOI

1982 ◽  
Vol 46 (11) ◽  
pp. 2881-2883
Author(s):  
Naofumi Kitabatake ◽  
Hirotaka Sasaki ◽  
Etsushiro Doi

1991 ◽  
Vol 71 (4) ◽  
pp. 1606-1613 ◽  
Author(s):  
D. L. Luchtel ◽  
L. Embree ◽  
R. Guest ◽  
R. K. Albert

We previously observed physiological evidence that arterial and venous extra-alveolar vessels shared a common interstitial space. The purpose of the present investigation was to determine the site of this continuity to improve our understanding of interstitial fluid movement in the lung. Orange G and Evans blue dyes were added to the arterial and venous reservoirs, respectively, of excised rabbit lungs as they were placed 20 cmH2O into zone 1 (pulmonary arterial and venous pressures = 5 cmH2O, alveolar pressure = 25 cmH2O). After 10 s or 4 h the lungs were fixed by immersion in liquid N2, freeze-dried, cut into 5-mm serial slices, and examined by light macroscopy. Serial sections of 0.25–0.5 mm were subsequently examined by scanning electron microscopy. In the animals subjected to the zone 1 stress for 4 h, arterial and venous extra-alveolar vessels were surrounded by cuffs of edema. The edema ratio (cuff area divided by vessel lumen area) was greater around arteries than veins and decreased with increasing vessel size. Periarterial cuffs usually contained orange dye and frequently contained both orange and blue dye. Lymphatics containing orange or blue dye were frequently seen in periarterial cuffs. Scanning electron microscopy demonstrated that extra-alveolar veins of approximately 100 microns diameter were anatomically contiguous with arterial extra-alveolar vessel cuffs. In rabbit lungs, both arterial and venous extra-alveolar vessels (and/or alveolar corner vessels) leak fluid into perivascular cuffs surrounding arterial extra-alveolar vessels, and lymphatics located in the periarterial cuff contain fluid that originates from both the arterial and venous extra-alveolar vessels.


2015 ◽  
Vol 81 (17) ◽  
pp. 5794-5803 ◽  
Author(s):  
Komlavi Anani Afanou ◽  
Anne Straumfors ◽  
Asbjørn Skogstad ◽  
Ajay P. Nayak ◽  
Ida Skaar ◽  
...  

ABSTRACTSubmicronic fungal fragments have been observed inin vitroaerosolization experiments. The occurrence of these particles has therefore been suggested to contribute to respiratory health problems observed in mold-contaminated indoor environments. However, the role of submicronic fragments in exacerbating adverse health effects has remained unclear due to limitations associated with detection methods. In the present study, we report the development of an indirect immunodetection assay that utilizes chicken polyclonal antibodies developed against spores fromAspergillus versicolorand high-resolution field emission scanning electron microscopy (FESEM). Immunolabeling was performed withA. versicolorfragments immobilized and fixed onto poly-l-lysine-coated polycarbonate filters. Ninety percent of submicronic fragments and 1- to 2-μm fragments, compared to 100% of >2-μm fragments generated from pure freeze-dried mycelial fragments ofA. versicolor, were positively labeled. In proof-of-concept experiments, air samples collected from moldy indoor environments were evaluated using the immunolabeling technique. Our results indicated that 13% of the total collected particles were derived from fungi. This fraction comprises 79% of the fragments that were detected by immunolabeling and 21% of the spore particles that were morphologically identified. The methods reported in this study enable the enumeration of fungal particles, including submicronic fragments, in a complex heterogeneous environmental sample.


Author(s):  
G. Pereira

Previous electron microscopic observations of the spleen have revealed the white pulp to be completely separated from the extravasated blood in the surrounding marginal zone by a strategically-located, double layer of reticular cells ensheathing a coarse reticular fiber. Similarly, a single reticular cell layer has been observed to form a continuous investment for all white pulp capillaries. To test the significance of this apparent isolation of the splenic white pulp from the blood, the distribution and composition of silver deposits in the spleen of argyric rats were determined by transmission and scanning electron microscopy coupled with computer-assisted x-ray analysis.Young male albino rats were made argyric by supplying them for many months with drinking water to which 1.5gm per liter of silver nitrate had been added. Specimens from the spleens of control and argyric animals were prepared for conventional transmission electron microscopy by glutaraldehyde-osmium fixation. For scanning electron microscopy, other specimens were fixed in buffered glutaraldehyde, freeze-dried in vacuo, coated with a thin film of gold- palladium and examined in a Cambridge Stereoscan Mark II.


Sign in / Sign up

Export Citation Format

Share Document