The Contribution of Intermediate-Voltage, High-Resolution Electron Microscopy In Materials Science: An Appraisal

Author(s):  
John L. Hutchison

Over the past five years or so the development of a new generation of high resolution electron microscopes operating routinely in the 300-400 kilovolt range has produced a dramatic increase in resolution, to around 1.6 Å for “structure resolution” and approaching 1.2 Å for information limits. With a large number of such instruments now in operation it is timely to assess their impact in the various areas of materials science where they are now being used. Are they falling short of the early expectations? Generally, the manufacturers’ claims regarding resolution are being met, but one unexpected factor which has emerged is the extreme sensitivity of these instruments to both floor-borne and acoustic vibrations. Successful measures to counteract these disturbances may require the use of special anti-vibration blocks, or even simple oil-filled dampers together with springs, with heavy curtaining around the microscope room to reduce noise levels. In assessing performance levels, optical diffraction analysis is becoming the accepted method, with rotational averaging useful for obtaining a good measure of information limits. It is worth noting here that microscope alignment becomes very critical for the highest resolution.In attempting an appraisal of the contributions of intermediate voltage HREMs to materials science we will outline a few of the areas where they are most widely used. These include semiconductors, oxides, and small metal particles, in addition to metals and minerals.

Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
J.L. Batstone ◽  
J.M. Gibson ◽  
Alice.E. White ◽  
K.T. Short

High resolution electron microscopy (HREM) is a powerful tool for the determination of interface atomic structure. With the previous generation of HREM's of point-to-point resolution (rpp) >2.5Å, imaging of semiconductors in only <110> directions was possible. Useful imaging of other important zone axes became available with the advent of high voltage, high resolution microscopes with rpp <1.8Å, leading to a study of the NiSi2 interface. More recently, it was shown that images in <100>, <111> and <112> directions are easily obtainable from Si in the new medium voltage electron microscopes. We report here the examination of the important Si/Si02 interface with the use of a JEOL 4000EX HREM with rpp <1.8Å, in a <100> orientation. This represents a true structural image of this interface.


Author(s):  
H. Kohl

High-Resolution Electron Microscopy is able to determine structures of crystals and interfaces with a spatial resolution of somewhat less than 2 Å. As the image is strongly dependent on instrumental parameters, notably the defocus and the spherical aberration, the interpretation of micrographs necessitates a comparison with calculated images. Whereas one has often been content with a qualitative comparison of theory with experiment in the past, one is currently striving for quantitative procedures to extract information from the images [1,2]. For the calculations one starts by assuming a static potential, thus neglecting inelastic scattering processes.We shall confine the discussion to periodic specimens. All electrons, which have only been elastically scattered, are confined to very few directions, the Bragg spots. In-elastically scattered electrons, however, can be found in any direction. Therefore the influence of inelastic processes on the elastically (= Bragg) scattered electrons can be described as an attenuation [3]. For the calculation of high-resolution images this procedure would be correct only if we had an imaging energy filter capable of removing all phonon-scattered electrons. This is not realizable in practice. We are therefore forced to include the contribution of the phonon-scattered electrons.


Author(s):  
O.L. Krivanek ◽  
S. Isoda ◽  
K. Kobayashi

The promise of the new generation of high-voltage, high-resolution electron microscopes (HREMs) for atomic resolution studies in materials science has excited considerable interest (1). This paper describes an application to elemental Ge of the first member of this generation, the Kyoto 500kV HREM (2).Fig. 1 shows a (Oil) Ge crystal almost certainly less than 100Å thick, supported by a thin amorphous Ge film and surrounded by several Au crystallites. The specimen was prepared by vapor co-deposition of Au and Ge from separate sources onto a rock salt substrate held at room temperature. The imaging parameters were: accelerating voltage 500kV, axial illumination, no objective aperture, el. opt. mag. 200 000x, exposureotime 10 secs and, as the optical diffractogram (Fig. lb) shows, defocus =-600Å (≃ Scherzer defocus). The dashed circles in the diffractogram show the theoretical extent of the first phase-contrast transfer interval. The interval easily includes all the 111 diffraction spots, indicating that all the end-on (ill) planes and the defects they contain have been imaged faithfully and without distortion.


Author(s):  
R. Gronsky ◽  
C.S. Murty

Although the more traditional applications of optical diffractograms in high resolution electron microscopy are related to determining instrumental performance, a significant advantage can also be achieved with this technique in the analysis of fine microstructural detail. Optical microdiffraction utilizes a field-limiting aperture in the optical bench system to selectively obtain the diffraction spectrum of specific segments of high resolution negatives, with a considerable increase in spatial resolution. Unfortunately the diffraction effects from the sampling aperture itself often interfere with the interpretation of results


Author(s):  
M. R. McCartney ◽  
David J. Smith

The examination of surfaces requires not only that they be free of adsorbed layers but the environment of the sample must also be maintained at high vacuum so that the surfaces remain clean. The possibility of resolving surface structures with atomic resolution has provided the motivation for optimizing intermediate and high voltage electron microscopes for this particular application. Electron microscopy offers a variety of techniques which have the capability of achieving atomic level detail of surfaces including plan-view imaging, REM and profile imaging. Operation at higher voltages permits reasonable pole piece dimensions thereby providing space for in situ studies yet still compatible with high resolution. Moreover, video systems can be attached which permit observation and recording of dynamic phenomena without compromising microscope performance.


Author(s):  
S.Y. Zhang ◽  
J.M. Cowley

The combination of high resolution electron microscopy (HREM) and nanodiffraction techniques provided a powerful means for characterizing many of the interface structures which are of fundamental importance in materials science. In this work the interface structure between magnesium oxide and aluminum has been examined by HREM (with JEM-200CX) and nanodiffraction (with HB-5). The interfaces were formed by evaporating Al on freshly prepared cubic MgO smoke crystals under various vacuum conditions, at 10 -4, 10-5 10-6 and 10-7 torr. The Al layers on the MgO (001) surface are about 100Å thick. TEM observations were performed with the incident beam along the MgO [100] direction so that the interface could be revealed clearly. The nanodiffraction patterns were obtained with the electron beam of 15Å diameter parallel to the interface.


Materials containing planar boundaries are of general interest and complete understanding of their structures is important. When direct imaging of the boundaries by, for instance, high-resolution electron microscopy, is impracticable, details of their structure and arrangement may be obtained from electron diffraction patterns. Such patterns are discussed in terms of those from intergrowth tungsten bronzes as specific examples. Fourier-transform calculations for proposed structures have been made to establish, in conjunction with optical-diffraction analogues, the features of the far-field diffraction patterns. These results have been compared with diffraction patterns obtained experimentally by transmission electron microscopy. The aim of the study, to show that the arrangement of the boundaries in these complicated phases can be deduced from their diffraction patterns without the need for high-resolution imaging, has been achieved. The steps to be taken to make these deductions are set out.


Sign in / Sign up

Export Citation Format

Share Document