The Contribution of Phonon-Scattered Electrons to High-Resolution Electron Micrographs of Crystals

Author(s):  
H. Kohl

High-Resolution Electron Microscopy is able to determine structures of crystals and interfaces with a spatial resolution of somewhat less than 2 Å. As the image is strongly dependent on instrumental parameters, notably the defocus and the spherical aberration, the interpretation of micrographs necessitates a comparison with calculated images. Whereas one has often been content with a qualitative comparison of theory with experiment in the past, one is currently striving for quantitative procedures to extract information from the images [1,2]. For the calculations one starts by assuming a static potential, thus neglecting inelastic scattering processes.We shall confine the discussion to periodic specimens. All electrons, which have only been elastically scattered, are confined to very few directions, the Bragg spots. In-elastically scattered electrons, however, can be found in any direction. Therefore the influence of inelastic processes on the elastically (= Bragg) scattered electrons can be described as an attenuation [3]. For the calculation of high-resolution images this procedure would be correct only if we had an imaging energy filter capable of removing all phonon-scattered electrons. This is not realizable in practice. We are therefore forced to include the contribution of the phonon-scattered electrons.

Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
John L. Hutchison

Over the past five years or so the development of a new generation of high resolution electron microscopes operating routinely in the 300-400 kilovolt range has produced a dramatic increase in resolution, to around 1.6 Å for “structure resolution” and approaching 1.2 Å for information limits. With a large number of such instruments now in operation it is timely to assess their impact in the various areas of materials science where they are now being used. Are they falling short of the early expectations? Generally, the manufacturers’ claims regarding resolution are being met, but one unexpected factor which has emerged is the extreme sensitivity of these instruments to both floor-borne and acoustic vibrations. Successful measures to counteract these disturbances may require the use of special anti-vibration blocks, or even simple oil-filled dampers together with springs, with heavy curtaining around the microscope room to reduce noise levels. In assessing performance levels, optical diffraction analysis is becoming the accepted method, with rotational averaging useful for obtaining a good measure of information limits. It is worth noting here that microscope alignment becomes very critical for the highest resolution.In attempting an appraisal of the contributions of intermediate voltage HREMs to materials science we will outline a few of the areas where they are most widely used. These include semiconductors, oxides, and small metal particles, in addition to metals and minerals.


Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


1991 ◽  
Vol 238 ◽  
Author(s):  
Geoffrey H. Campbells ◽  
Wayne E. King ◽  
Stephen M. Foiles ◽  
Peter Gumbsch ◽  
Manfred Rühle

ABSTRACTA (310) twin boundary in Nb has been fabricated by diffusion bonding oriented single crystals and characterized using high resolution electron microscopy. Atomic structures for the boundary have been predicted using different interatomic potentials. Comparison of the theoretical models to the high resolution images has been performed through image simulation. On the basis of this comparison, one of the low energy structures predicted by theory can be ruled out.


1988 ◽  
Vol 02 (06) ◽  
pp. 835-839 ◽  
Author(s):  
M. HERVIEU ◽  
B. DOMENGES ◽  
C. MICHEL ◽  
B. RAVEAU

The new superconductor Bi 2 Sr 2 CaCu 2 O 8+δ with T c ranging from 80 to 105K, was studied by electron microscopy. The electron diffraction study shows a pseudo-tetragonal symmetry with a≈b≈5.4 Å and c≈30.7 Å and satellites along a, which settle in an incommensurate way. The high resolution images agree with the proposed basic structure. The stacking of the ( BiO y)2 and [ Sr 2 CaCu 2 O 6] layers is quite regular, with only some defects corresponding to c≈24 Å. The lamellar character of the oxide results in splitting and bending of the crystals.


2001 ◽  
Vol 16 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Takeo Oku ◽  
Jan-Olov Bovin ◽  
Iwami Higashi ◽  
Takaho Tanaka ◽  
Yoshio Ishizawa

Atomic positions for Y atoms were determined by using high-resolution electron microscopy and electron diffraction. A slow-scan charge-coupled device camera which had high linearity and electron sensitivity was used to record high-resolution images and electron diffraction patterns digitally. Crystallographic image processing was applied for image analysis, which provided more accurate, averaged Y atom positions. In addition, atomic disordering positions in YB56 were detected from the differential images between observed and simulated images based on x-ray data, which were B24 clusters around the Y-holes. The present work indicates that the structure analysis combined with digital high-resolution electron microscopy, electron diffraction, and differential images is useful for the evaluation of atomic positions and disordering in the boron-based crystals.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1139-1140
Author(s):  
D. Van Dyck

The ultimate goal of high resolution electron microscopy is to determine quantitatively the atomic structure of an object. In this respect the electron microscope can be considered as an information channel that carries this information from the object to the observer. High resolution images are then to be considered as data planes from which the structural information has to be extracted.However this structural information is usually hidden in the images and cannot easily be assessed. Therefore, a quantitative approach is required in which all steps in the imaging process are taken into account. Two main approaches have been followed so far in the literature: the indirect approach in which the images are simulated for various plausible trial structures of the object and compared with the experimental images, and the direct approach in which the lost phase information is retrieved using holographic techniques so as to “deblur” the effect of the microscope and to reveal directly the atomic structure of the object.


Author(s):  
Tetsuo Oikawa ◽  
Fumiko Ishigaki ◽  
Kiichi Hojou ◽  
Koichi Kanaya

In high resolution electron microscopy, it is most important to determine the defocus of electron micrographs of amorphous support films. The variation of spatial frequencies of phase contrast of support films was obtained from the phase shift of the electron waves caused by defocus and spherical aberration as well as the atomic phase, which are demonstrated by use of optical Fourier transforms. The spatial frequencies of phase contrast of films of tungsten, prepared by ion bombardment, which are useful as support films for high resolution electron microscopy, has been discussed analytically.Taking account of atomic phase shift, the transfer function, which was originally presented by Thon (1966), was modified. Optical Fourier transforms are in similar to the calculated Fourier transforms of corre- sponding computed images. Accordingly, it turned out that the atomic phase shift should not be neglected. The thickness of tungsten film, in case of less than 2 nm thickness, can be determined by comparing the optical Fourier transforms with the calculated ones.


Author(s):  
R.A. Herring

TEM hollow cone illumination can produce high resolution images having atomic number (Z) contrast within a lattice image. Inorder to produce these images, the contribution of four sources of electrons should be considered. These are the main, inelastically scattered, elastically scattered, and diffracted beams. This abstract discusses these sources of electrons to the hollow cone (HC) image, and then goes further to propose a possible method of extending the resolution of the electron microscope by using diffracted HC beams to form holograms which should remove the limitation on resolution imposed by the objective lens and inelastically scattered electrons. A Philips EM 430T was used to take the electron micrographs.


Author(s):  
K. Hiraga ◽  
D. Shindo ◽  
M. Hirabayashi ◽  
T. Oikawa ◽  
N. Mori ◽  
...  

The “Imaging Plate” (IP) has three superior characteristics, i.e., high sensitivity to the electron beam, and a wide dynamic range and good linearity for electron dose compared with conventional EM films. The use of the IP is expected to lead to quantitative analysis of electron microscopy. The purpose of the present work is to examine the possibility of application of the IP to the quantitative analysis of electron diffraction and high-resolution electron microscopy.By using the TEM-IP System developed by Oikawa et al., which is published in this conference, electron diffraction patterns and high-resolution electron micrographs taken on the IP with an effective size of 102 х 77 mm2 were convertedinto digital data of 2048 х 1536 pixels with 4096 gray levels. Observations of electron diffraction patterns and high-resolution electron micrographs were made with a 200 kV (JEM-2000FX) and a 400 kV (JEM-4000EX) electron microscope, respectively.


Sign in / Sign up

Export Citation Format

Share Document