A Structural Model for a Quasi-Crystalline Material Derived from TEM

Author(s):  
Jan-Olov Bovin ◽  
Osamu Terasaki ◽  
Jan-Olle Malm ◽  
Sven Lidin ◽  
Sten Andersson

High resolution transmission electron microscopy (HRTEM) is playing an important role in identifying the new icosahedral phases. The selected area diffraction patterns of quasi crystals, recorded with an aperture of the radius of many thousands of Ångströms, consist of dense arrays of well defined sharp spots with five fold dilatation symmetry which makes the interpretation of the diffraction process and the resulting images different from those invoked for usual crystals. The atomic structure of the quasi crystals is not established even if several models are proposed. The correct structure model must of course explain the electron diffraction patterns with 5-, 3- and 2-fold symmetry for the phases but it is also important that the HRTEM images of the alloys match the computer simulated images from the model. We have studied quasi crystals of the alloy Al65Cu20Fe15. The electron microscopes used to obtain high resolution electro micrographs and electron diffraction patterns (EDP) were a (S)TEM JEM-2000FX equipped with EDS and PEELS showing a structural resolution of 2.7 Å and a IVEM JEM-4000EX with a UHP40 high resolution pole piece operated at 400 kV and with a structural resolution of 1.6 Å. This microscope is used with a Gatan 622 TV system with an image intensifier, coupled to a YAG screen. It was found that the crystals of the quasi crystalline materials here investigated were more sensitive to beam damage using 400 kV as electron accelerating voltage than when using 200 kV. Low dose techniques were therefore applied to avoid damage of the structure.

1991 ◽  
Vol 235 ◽  
Author(s):  
R. Perez ◽  
J. Reyes-Gasga ◽  
M. Jose-Yacaman

ABSTRACTAn investigation of the phase transformations experienced by the decagonal and icosahedral phases in two different quaternary -alloys is carried out. The transformation in the decagonal phase of Al-Cu-Co-Si alloy is induced by the electron radiation in a transmission electron microscope. However, in the icosahedral phase of Al-Cu-Co-Fe alloy this transformation is induced by annealing. Electron diffraction patterns obtained from both phases suggest that the deformation mechanism involved in these kind of transitions is related with twinning


Author(s):  
James M. Howe

Information provided by in situ studies is often essential for understanding microstructural evolution in solids. The recent development of intermediate-voltage high-resolution transmission electron microscopes (HRTEM) with in situ heating capabilities now provides the opportunity to perform in situ high-resolution studies of interphase boundary (IPB) motion. This paper presents initial results on in situ HRTEM studies of IPB motion in metallic alloys, in particular, during growth of Q precipitates in an Al-Cu-Mg-Ag alloy and Pd3Si crystals in an amorphous Pd-Si alloy.Samples of an Al-4Cu-0.5Mg-0.5Ag (wt.%) alloy were aged for 24 hr at 250°C and electropolished in a HNO3/methanol solution; samples of an amorphous Pd80Si20 (at.%) ribbon were ion milled in a liquid-nitrogen cold-stage at 6 kV, 0.3 mA and 15° tilt. The samples were examined at 400 kV in a JEOL 4000EX microscope equipped with a UHP40X hot-stage pole piece and double-tilt holder at temperatures of 200-400°C. Images were recorded on a Sony BetaCam video cassette recorder connected to a Gatan fiber-optically coupled TV camera with an image intensifier. A 35 mm camera was used to obtain photographs directly from the TV monitor during playback of the video cassettes.


Materials containing planar boundaries are of general interest and complete understanding of their structures is important. When direct imaging of the boundaries by, for instance, high-resolution electron microscopy, is impracticable, details of their structure and arrangement may be obtained from electron diffraction patterns. Such patterns are discussed in terms of those from intergrowth tungsten bronzes as specific examples. Fourier-transform calculations for proposed structures have been made to establish, in conjunction with optical-diffraction analogues, the features of the far-field diffraction patterns. These results have been compared with diffraction patterns obtained experimentally by transmission electron microscopy. The aim of the study, to show that the arrangement of the boundaries in these complicated phases can be deduced from their diffraction patterns without the need for high-resolution imaging, has been achieved. The steps to be taken to make these deductions are set out.


2009 ◽  
Vol 42 (2) ◽  
pp. 242-252 ◽  
Author(s):  
Cyril Cayron ◽  
Martien Den Hertog ◽  
Laurence Latu-Romain ◽  
Céline Mouchet ◽  
Christopher Secouard ◽  
...  

Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grownviathe vapour–liquid–solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure withc/a= 12(2/3)1/2, but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data,i.e.EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1675
Author(s):  
Edgar F. Rauch ◽  
Patrick Harrison ◽  
Muriel Véron

ACOM/TEM is an automated electron diffraction pattern indexing tool that enables the structure, phase and crystallographic orientation of materials to be routinely determined. The software package, which is part of ACOM/TEM, has substantially evolved over the last fifteen years and has pioneered numerous additional functions with the constant objective of improving its capabilities to make the tremendous amount of information contained in the diffraction patterns easily available to the user. Initially devoted to the analysis of local crystallographic texture, and as an alternative to both X-ray pole figure measurement and EBSD accessories for scanning electron microscopes, it has rapidly proven itself effective to distinguish multiple different phases contained within a given sample, including amorphous phases. Different strategies were developed to bypass the inherent limitations of transmission electron diffraction patterns, such as 180° ambiguities or the complexity of patterns produced from overlapping grains. Post processing algorithms have also been developed to improve the angular resolution and to increase the computing rate. The present paper aims to review some of these facilities. On-going works on 3D reconstruction are also introduced.


1992 ◽  
Vol 25 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Y. G. Wang ◽  
H. Q. Ye ◽  
K. H. Kuo ◽  
J. G. Guo

High-resolution transmission electron microscopy (HRTEM) and electron diffraction were used to investigate the microstructure of natural lead oxides found in Panzhihua Mountain, China. The electron diffraction patterns showed crossing of diffraction spots along 〈110〉 directions in litharge and along 〈100〉 directions in massicot and the structural images showed the domain-like texture, probably constructed by arrays of planar defects in the fundamental structures. Based upon the structure of these oxides the possible structural models of planar defects are discussed and the orientation relationship of litharge and massicot is determined.


Author(s):  
H. Koike ◽  
T. Matsuo ◽  
K. Ueno ◽  
M. Suzuki

Since the identification of single atoms was achieved by Crewe et al, scanning transmission microscopy has been put into pratical use. Recently they applied this method to the quantitative mass analysis of DNA.As pointed out previously the chromatic aberration which decreases the image contrast and quality, does not affect a scanning transmission image as it does a conventional transmission electron microscope image. Thus, the STEM method is advantageous for thick specimen. Further this method employs a high sensitive photomultiplier tube which also functions as an image intensifier. This detection method is effective for the observation of living specimens or easily damaged specimens. In this respect the scanning transmission microscope with high accelerating voltage is necessary.Since Uyeda's experiments of crystalline materials, many workers have been discussed how thick specimens can be observed by CTEM. With biological specimens, R. Szirmae reported on the decrease in the image contrast of rabbit psoas muscle sections at various accelerating voltages and specimen thicknesses.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
John F. Mansfield

One of the most important advancements of the transmission electron microscopy (TEM) in recent years has been the development of the analytical electron microscope (AEM). The microanalytical capabilities of AEMs are based on the three major techniques that have been refined in the last decade or so, namely, Convergent Beam Electron Diffraction (CBED), X-ray Energy Dispersive Spectroscopy (XEDS) and Electron Energy Loss Spectroscopy (EELS). Each of these techniques can yield information on the specimen under study that is not obtainable by any other means. However, it is when they are used in concert that they are most powerful. The application of CBED in materials science is not restricted to microanalysis. However, this is the area where it is most frequently employed. It is used specifically to the identification of the lattice-type, point and space group of phases present within a sample. The addition of chemical/elemental information from XEDS or EELS spectra to the diffraction data usually allows unique identification of a phase.


Sign in / Sign up

Export Citation Format

Share Document