The combustion synthesis of the ferroelectric material, BaTiO3, studied by time-resolved X-ray diffraction

1999 ◽  
Vol 14 (2) ◽  
pp. 111-113 ◽  
Author(s):  
E. M. Larson ◽  
Joe Wong ◽  
J. B. Holt ◽  
P. A. Waide ◽  
B. Rupp

The combustion synthesis of the common ferroelectric material, BaTiO3, was developed using the stoichiometry: BaO2+0.2 Ti+0.8 TiO2→BaTiO3+0.3 O2. An adiabatic temperature, Tad, of the reaction was calculated from known thermodynamic data to be 1917 °C. Real time chemical changes in the formation of BaTiO3 during the reaction have been monitored using time-resolved X-ray diffraction with synchrotron radiation as the X-ray source. A time resolution of 250 ms was achieved. The combustion synthesis of BaTiO3 was followed by observing the intensities of reactant and product Bragg diffraction peaks in order to qualitatively identify the phases present. Because BaTiO3 forms initially as a cubic phase, X-ray diffraction of the product was monitored for a period of 20 min after the reaction to observe the phase transformation to the tetragonal form. This transformation is evident in these post-reaction scans as the cubic 110 and 220 peaks are split to the tetragonal 101/110 and 202/220 ones, respectively.

1993 ◽  
Vol 37 ◽  
pp. 479-482 ◽  
Author(s):  
Joe Wong ◽  
J. W. Elmer ◽  
P. A. Waide ◽  
E. M. Larson

The synchrotron x-ray source provides a unique opportunity to observe many “in-situ” processes. The formation of the “short-lived” intermediate species, Ta2C, during the combustion synthesis of TaC, has been observed and reported by monitoring the Bragg diffraction peaks of the reactants and products, Similarly, the synthesis of the ferroelectric material, BaTiO3, and subsequent phase transfonnation from cubic to tetragonal have also been investigated. These experiments would not have been possible without the high incident x-ray flux available at a synchrotron source.


1993 ◽  
Vol 8 (7) ◽  
pp. 1533-1541 ◽  
Author(s):  
E.M. Larson ◽  
Joe Wong ◽  
J.B. Holt ◽  
P.A. Waide ◽  
G. Nutt ◽  
...  

The formation of TaC and Ta2C by combustion synthesis from their elemental constituents has been studied by time-resolved x-ray diffraction (TRXRD) using synchrotron radiation. The reactions have been followed with a time resolution down to 50 ms. Since the adiabatic temperatures for both reactions are well below any liquidus temperature in the Ta—C phase diagram, no melting occurs and these combustion reactions occur purely in the solid state. The phase transformations associated with these reactions are followed by monitoring the disappearance of reactant and appearance of product powder diffraction peaks in real time as the reaction front propagates through the combusting specimen. In the synthesis of TaC, the results show the formation of the subcarbide (Ta2C phase as an intermediate. In the synthesis of Ta2C, the reaction proceeds directly to the product with no discernible intermediate Ta–C phase within a 50 ms time frame. The chemical dynamics associated with the combustion synthesis of TaC may be described by an initial phase transformation to hexagonal Ta2C arising from carbon diffusion into the Ta metal lattice. As more carbon is available this intermediate subcarbide phase, which has one-half of its octahedral interstices occupied by the carbon, further transforms to the cubic TaC final product, in which all octahedral sites are now occupied. The time-resolved data indicate that the rate of formation of Ta2C is a factor of two faster than that of TaC.


Langmuir ◽  
2010 ◽  
Vol 26 (14) ◽  
pp. 11605-11608 ◽  
Author(s):  
Hiroyuki Mori ◽  
Shoichi Kutsumizu ◽  
Kazuya Saito ◽  
Katsuhiro Yamamoto ◽  
Shinichi Sakurai ◽  
...  

2009 ◽  
Vol 1160 ◽  
Author(s):  
Simone Raoux ◽  
Cyril Cabral ◽  
Lia Krusin-Elbaum ◽  
Jean L. Jordan-Sweet ◽  
Martin Salinga ◽  
...  

AbstractThe crystallization behavior of Ge-Sb phase change materials with variable Ge:Sb ratio X between 0.079 and 4.3 was studied using time-resolved x-ray diffraction, differential scanning calorimetry, x-ray reflectivity, optical reflectivity and resistivity vs. temperature measurements. It was found that the crystallization temperature increases with Ge content from about 130 °C for X = 0.079 to about 450 °C for X = 4.3. For low X, Sb x-ray diffraction peaks occurred during a heating ramp at lower temperature than Ge diffraction peaks. For X = 1.44 and higher, Sb and Ge peaks occurred at the same temperature. Mass density change upon crystallization and optical and electrical contrast between the phases show a maximum for the eutectic alloy with X = 0.17. The large change in materials properties with composition allows tailoring of the crystallization properties for specific application requirements.


2017 ◽  
Vol 7 ◽  
pp. 1878-1882 ◽  
Author(s):  
Alexander E. Sytschev ◽  
Dmitry Yu. Kovalev ◽  
Dominique Vrel ◽  
Sergey G. Vadchenko

2014 ◽  
Vol 40 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Yurii M. Mikhailov ◽  
Victor V. Aleshin ◽  
Alexandra M. Kolesnikova ◽  
Dmitrii Yu. Kovalev ◽  
Vasilii. I. Ponomarev

2006 ◽  
Vol 503-504 ◽  
pp. 193-200 ◽  
Author(s):  
Helena Van Swygenhoven

Large scale computer simulations suggest that in nanocrystalline metals grain boundaries act as source and sink for dislocations. This suggestion has been the motivation for developing a new in-situ X-ray diffraction technique that allow peak profile analysis of several Bragg diffraction peaks during tensile deformation. Synergies between simulations and experiments are discussed including new applications of the in-situ technique.


2019 ◽  
Vol 75 (10) ◽  
pp. 937-946 ◽  
Author(s):  
Rebecka Andersson ◽  
Cecilia Safari ◽  
Petra Båth ◽  
Robert Bosman ◽  
Anastasya Shilova ◽  
...  

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.


Sign in / Sign up

Export Citation Format

Share Document