Green hydrothermal synthesis of CeO2 NWs–reduced graphene oxide hybrid with enhanced photocatalytic activity

2014 ◽  
Vol 29 (1) ◽  
pp. 8-13 ◽  
Author(s):  
K. Huang ◽  
M. Lei ◽  
Y.J. Wang ◽  
C. Liang ◽  
C.X. Ye ◽  
...  

In this study, CeO2 nanowires–reduced graphene oxide hybrids (CeO2 NWs–RGO) were synthesized by a green hydrothermal method using CeO2 NWs and graphene oxide (GO) as raw materials. During the process of reduction of GO, hydrothermal condition with supercritical water provides thermal and chemical factors to synthesize RGO. The photocatalytic experimental results show that the CeO2 NWs–RGO hybrids exhibit enhanced photocatalytic activity for degradation of Rhodamine B (RhB) under UV-light irradiation. It is found that the degree of photocatalytic activity enhancement strongly depends on the mass ratio of RGO in the hybrids, and the remarkable photocatalytic activity is 20 times that of pristine CeO2 NWs when the loading amount of RGO is 8.0 wt%. The enhancement of photocatalytic activity can be attributed to the excellently elevated absorption ability for the dye through π–π conjugation as well as the effective inhibition of the recombination of photogenerated electrons because of the electronic interaction between CeO2 NWs and RGO sheets.

2018 ◽  
Vol 9 ◽  
pp. 1550-1557 ◽  
Author(s):  
Huan Xing ◽  
Wei Wen ◽  
Jin-Ming Wu

TiO2(B) is usually adopted to construct phase junctions with anatase TiO2 for applications in photocatalysis to facilitate charge separation; its intrinsic photocatalytic activity, especially when in the form of one- or three-dimensional nanostructures, has been rarely reported. In this study, a sheet-on-belt branched TiO2(B) powder was synthesized with the simultaneous incorporation of reduced graphene oxide (rGO). The monophase, hierarchically nanostructured TiO2(B) exhibited a reaction rate constant 1.7 times that of TiO2(B)/rGO and 2.9 times that of pristine TiO2(B) nanobelts when utilized to assist the photodegradation of phenol in water under UV light illumination. The enhanced photocatalytic activity can be attributed to the significantly increased surface area and enhanced charge separation.


2021 ◽  
pp. 138897
Author(s):  
Suresh Sagadevan ◽  
J. Anita Lett ◽  
Getu Kassegn Weldegebrieal ◽  
Md Rokon ud Dowla Biswas ◽  
Won Chun Oh ◽  
...  

NANO ◽  
2017 ◽  
Vol 12 (03) ◽  
pp. 1750032 ◽  
Author(s):  
H.-Y. He

Reduced graphene oxide-SnSe (rGO-SnSe) nanohybrids were synthesized with a solution chemical reaction at room temperature. The nanohybrids were characterized by various techniques for their microstructural and photocatalytic activities in photodegradation of alkaline dye malachite green in the water. The effects of rGO/SnSe ratio, initial solution pH, and H2O2 concentration on the photodegradation efficiency were studied. The SnSe nanocrystallines with nanoscale size and narrow bandgap were formed and uniformly adhered on the rGO surface. Raman analysis confirmed the reduction of GO. The experimental results indicated that the nanohybrids showed excellent sunlight-excited photocatalytic activity in degrading malachite green in the water. Significantly, the nanohybrids showed remarkable photo-Fenton-like catalytic activity. The photodegradation rates of the hybrids were greater than that of SnSe nanoparticles, increased with increasing rGO/SnSe ratio, and related to operation parameters. High photocatalytic activities were ascribed to the efficiency interface effect that was confirmed by the calculations of band energy level and photoconductivity. The TOC measurement further verified the photodegradation results. The nanoparticles and nanohybrids also showed excellent reusability.


RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13722-13731 ◽  
Author(s):  
Satish Kasturi ◽  
Sri Ramulu Torati ◽  
Yun Ji Eom ◽  
Syafiq Ahmad ◽  
Byong-June Lee ◽  
...  

Herein, we have reported the real-time photodegradation of methylene blue, an organic pollutant, in the presence of sunlight at an ambient temperature using a platinum-decorated reduced graphene oxide (rGO/Pt) nanocomposite.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41600-41611
Author(s):  
A. Farouk ◽  
S. El-Sayed Saeed ◽  
S. Sharaf ◽  
M. M. Abd El-Hady

Silver nanoparticles were in situ prepared on the surface of linen fabric coated by graphene oxide (GO).


Sign in / Sign up

Export Citation Format

Share Document