Alternative production systems' effects on the K-factor of the Revised Universal Soil Loss Equation

1997 ◽  
Vol 12 (2) ◽  
pp. 55-58 ◽  
Author(s):  
Kim L. Fleming ◽  
William L. Powers ◽  
Alice J. Jones ◽  
Glenn A. Helmers

AbstractThe soil erodibility factor (K) of the Revised Universal Soil Loss Equation is currently considered a constant for all soils in the same type, regardless of production practice. To examine the effect of alternative production systems on the K-factor we compared pairs of alternatively and conventionally farmed fields on a Judson silt loam (Fine-silty, mixed, mesic Cumulic Hapludolls), a Yutan silty clay loam (Fine-silty, mixed, mesic Mollic Hapludalf), and a Wann fine sandy loam (Coarse-loamy, mixed, mesic Fluvaquentic Haplustolls). Soil cores were taken from the surface 10 cm and analyzed for organic matter, permeability, structure, and texture. These data were used to estimate K-factors from a nomograph. All soils in the study had a fine granular structure. Organic matter content and permeability were significantly higher for the alternatively managed field at every location, except for no difference in permeability on the Judson soil. However, the K-factor was significantly lower for the alternative system on the Judson soil. Of all the parameters, texture has the greatest influence in determining K-factors within the nomograph, with soils higher in silt being more erodible than soils higher in sand or clay. Thus, the influences of alternative production systems affected the Judson soil to a greater degree than other textures because of its higher inherent susceptibility to erosion. This study shows that alternative production systems affect the K-factor of some soil types and can reduce soil erodibility, and therefore should be considered when developing conservation plans.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manish Olaniya ◽  
Pradip Kumar Bora ◽  
Susanta Das ◽  
Pukhrambam Helena Chanu

Abstract In absence of soil erosion plots for determination of erodibility index (K) for erosion models like Universal Soil Loss Equation (USLE) or Revised Universal Soil Loss Equation (RUSLE) to estimate soil erosion, empirical relations are used. In the present study, soil erodibility index was determined for entire Ri-bhoi district of Meghalaya based on soil physical and chemical properties through empirical relationship and presented in a map form. Dominant land uses of the district were identified through geo-spatial tools which were viz. agriculture, forest, jhum land and wasteland. Soil samples from surface depth (01–15 cm) were collected from areas of different dominant land uses. Twenty five sampling points were selected under each land use type and geo-coded them on the base map of Ri-bhoi district. Apart from K-index, Clay Ratio, Modified Clay Ratio and Critical Soil Organic Matter were also determined for understanding the effect of primary soil particles on erodibility. In agriculture land use system K-index values were found in the range of 0.08–0.41 with an average of 0.25 ± 0.02. In case of jhum, forest and wasteland these were in the range of 0.08–0.42 with an average of 0.20 ± 0.01; 0.09–0.40 with an average of 0.22 ± 0.02, and 0.10–0.34 with an average value of 0.23 ± 0.02, respectively. Clay ratio (2.74) and Modified clay ratio (2.41) were observed to be higher in forest LUS, lower clay ratio (1.97) and modified clay ratio (1.81) were found in the wasteland indicating erosion susceptibility in forested area. The values of Critical Level of Organic Matter (CLOM) for the district ranged from 4.72 to 16.56. Out of 100 samples, only one sample had CLOM value less than 5 and rest 99 samples had values more than 5 indicating that the soils of the district had moderate to stable soil structure and offer resistance to erosion. All the indices values of geo-coded points were then interpolated in the Arc-GIS environment to produce land use based maps for Ri-bhoi district of Meghalaya. As K-index is a quantitative parameter which is used in models, the index can be then interpolated for estimation of soil erosion through USLE or RUSLE for any given situation.


Author(s):  
Muhammad Rahman Djuwansah ◽  
Asep Mulyono

One of soil parameters that affects the rate of erosion is the soil erodibility. Soil erodibility studies had been conducted in one of the watershed of Lombok in 2015. The tests were carried out for five soil profiles by taking samples from each layers. Samples were analyzed for particles sizes and organic matter contents. The analysis was performed using two assessment models of soil erodibility, the Universal Soil Loss Equation (USLE) and Erosion Productivity Impact Calculator (EPIC) models. Obtained soil erodibility (K factors) values varied from 0.07 to 0.74 for USLE models and 0.18 to 0.46 for EPIC models. Statistical similarity (R) test resulted R=-0.28*10-19. It has indicated that there was no statistical difference between the results of both methods. The older volcanic rocks give a high erodibility factor. In this study, vertisols soils show a higher erodibility factor than other volcanic rocks, such as inceptisols, andisols and entisols soil. Lower soil organic matter and clay contents are the factors that influence high soil erodibility.Salah satu parameter tanah yang sangat berpengaruh terhadap besarnya erosi adalah faktor erodibilitas tanah. Studi erodibilitas tanah telah dilakukan di salah satu DAS di Pulau Lombok dengan uji lapangan. Uji lapangan dilakukan pada 5 profil tanah dan pengambilan sampel pada setiap lapisan untuk uji laboratorium terhadap kandungan partikel pasir, debu, liat dan bahan organik tanah. Analisis dilakukan menggunakan 2 model prediksi erodibilitas tanah yaitu model Universal Soil Loss Equation (USLE) dan Erosion Productivity Impact Calculator (EPIC). Nilai erodibilitas tanah dengan model USLE berkisar 0.07-0.74 dan 0.18-0.46 dengan model EPIC. Analisis statistik dengan tes R menghasilkan R=-0,28*10-19 yang menandakan nilai K yang diperoleh oleh kedua metode tidak berbeda. Endapan batuan vulkanik yang lebih tua di wilayah studi menghasilkan tingkat erodibilitas yang tinggi. Jenis tanah vertisols yang berasal dari endapan batuan volkanik tua menghasilkan tingkat erodibilitas tanah yang lebih tinggi dibandingkan jenis tanah lain yang terbentuk dari endapan batuan vulkanik seperti tanah inceptisols, andisols dan entisols. Semakin rendahnya kandungan bahan organik dan liat dalam tanah mengakibatkan semakin tingginya erodibilitas tanah.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 89
Author(s):  
Masato Oda ◽  
Yin Yin Nwe ◽  
Hide Omae

Palau is an island in the Micronesia region of the western Pacific Ocean. The island receives heavy rainfall and has steep slopes, so 92% of the land is categorized within the most erodible rank, with a T factor of 5. A recent study reported that the water infiltration rate is proportional to the root mass of the crop soil; therefore, we attempted to evaluate the performance of root mass for preventing soil erosion. We covered parts of the land, with a slope of 15.4° (13.4°–17.3°), with weed control fabric to prevent the growth of grass and roots, then removed the fabric, cultivated the land, planted sweet potatoes, and compared the amount of soil erosion with other areas. Surprisingly, there was no erosion at all in the test plots, although there were 24 rainfall events that caused erosion. For the parameters of the Universal Soil Loss Equation (USLE) equation used in the present study, only the K factor was not actually measured. This means the K factor was larger than the actual value. Land at low risk of soil erosion and suitable for agriculture can be found by measuring K factor locally, even if the area is categorized as unsuitable.


1996 ◽  
Vol 32 (1) ◽  
pp. 91-101 ◽  
Author(s):  
M. Ruppenthal ◽  
D. E. Leihner ◽  
T. H. Hilger ◽  
J. A. Castillo F.

SUMMARYThe rainfall erosivity (R) and soil erodibility (K) factors of the Universal Soil Loss Equation (USLE) were determined on two sites in the Colombian Cauca Department over a five year period when rainfall was mostly lower than average. The results showed that the high erosion potential of the soils can be attributed more to high rain erosivity than soil erodibility. The R factor explained between 59 and 81% of the variation in soil loss recorded on continuously clean-tilled fallow plots. The erodibility of Inceptisols in the study region is classified as low. Values for soil erodibility (K) ranged from 0.012 to 0.015 (measured in SI units) in the fifth year of permanent bare fallowing. K factors were higher in the rainy than in the dry season. Soils, previously under grass vegetation, were very resistant to erosion in the first two years of bare fallowing. In the third year erodibility increased sharply and continued to increase steadily until the sixth year. K factors predicted by the USLE nomograph underestimated the empirically-determined erodibility of these highly aggregated clay soils.


CATENA ◽  
2001 ◽  
Vol 46 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Guangxing Wang ◽  
George Gertner ◽  
Xianzhong Liu ◽  
Alan Anderson

2019 ◽  
Vol 37 (4) ◽  
pp. 391
Author(s):  
Jesús Emmanuel Pérez-Salinas ◽  
Fernando Rufino-Rodríguez ◽  
Armando Lopez-Santos ◽  
Jorge Alejandro Torres-González ◽  
Antonio De Jesús Meraz-Jiménez ◽  
...  

Erosion estimates for black soils in Mexico based on the Universal Soil Loss Equation (USLE) present discrepancies due to generalizations that lead to errors in permissible limits, with the erodibility factor or K factor (FK) being the most sensitive. The objective of the present investigation was to obtain a reasonable FK range for a Phaeozem (PH) from central Mexico by contrasting two equations based on the USLE. Samples were randomly obtained at three sites (P1, P2, P3) of a four-hectare area. The percentage of organic matter, textural class, soil structure, and profile permeability were determined. The results reveal differences between the estimated FK (FKe) and reference FK (FKr), whose values were +0.015, +0.028, and +0.029 for P1, P2, and P3, respectively. The differences represent underestimations that are up to 1.7 times greater in magnitude for FKr with respect to FKe. The statistical analysis rejects the null hypothesis (H0) that the means of each site evaluated are the same (P1 = P2 = P3). Although the variances between the factors of erodibility obtained using the equation specific to the Mollisols in Yunnan Province, China, and the reference nomography developed primarily in United States are significantly different (α ≥ 0.01), a combination of both could provide a range of maximums and minimums in the FK estimates and would yield better results than with the use of default values that tend to underestimate erosion rates.


Sign in / Sign up

Export Citation Format

Share Document