Identification of Sulfonylurea Herbicide-Resistant Prickly Lettuce (Lactuca serriola)

1990 ◽  
Vol 4 (1) ◽  
pp. 163-168 ◽  
Author(s):  
Carol A. Mallory-Smith ◽  
Donald C. Thill ◽  
Michael J. Dial

A naturally occurring prickly lettuce biotype resistant to a 5:1 formulated mixture of chlorsulfuron:metsulfuron (DPX-G8311) was identified in a no-till winter wheat field near Lewiston, ID, in April, 1987. Field and greenhouse studies were established to evaluate its resistance to other sulfonylureas, imidazolinones, and herbicides with alternate sites of action. The resistant biotype resisted eight sulfonylurea herbicides; resisted the imidazolinone herbicides, imazapyr and imazethypyr, but not imazaquin; and resisted no other herbicides included in the studies. The resistant biotype was identified in seven of nine fields on the farm where it was discovered.

1992 ◽  
Vol 6 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Mauricio Alcocer-Ruthling ◽  
Donald C. Thill ◽  
Bahman Shafii

Repeated use of sulfonylurea herbicides in continuous, no-till winter wheat selected for a herbicide resistant biotype of prickly lettuce in Idaho. Greenhouse experiments were conducted to compare the relative competitiveness and growth rate of sulfonylurea herbicide resistant (R) and susceptible (S) prickly lettuce. The S biotype of prickly lettuce produced 31% more aboveground biomass than the R biotype averaged over all densities. Both biotypes were equally competitive when analyzed for both inter- and intrabiotype competition. In relative growth rate studies, regression analysis showed that the S biotype accumulated biomass 52% faster than the R biotype. The results of this study showed that the S biotype was superior to the R biotype in biomass production and growth rate, but competitiveness appeared to be equal for both biotypes. Other fitness parameters must be measured before fitness differences between biotypes can be determined.


1992 ◽  
Vol 6 (2) ◽  
pp. 437-440 ◽  
Author(s):  
Mauricio Alcocer-Ruthling ◽  
Donald C. Thill ◽  
Carol Mallory-Smith

Sulfonylurea herbicide-resistant prickly lettuce was discovered in Idaho in 1987. The objectives of these surveys were to determine the change with time in the proportion of sulfonylurea resistant and susceptible prickly lettuce biotypes on the farm where it originally occurred, and to determine the spread of sulfonylurea resistant prickly lettuce beyond its point of origin. On average, the proportion of resistant plants had decreased from 1988 to 1990, a period when sulfonylurea herbicide use was discontinued on the farm. Resistant prickly lettuce plants were found at seven sites away from the original infested farm. Several sites were near the farm along roadsides that had been sprayed with sulfometuron. This study shows that the proportion of resistant prickly lettuce decreased where previously found, but its range increased.


1992 ◽  
Vol 6 (4) ◽  
pp. 858-864 ◽  
Author(s):  
Mauricio Alcocer-Ruthling ◽  
Donald C. Thill ◽  
Bahman Shafii

The persistence of herbicide-resistant biotypes within a given weed population can be highly correlated with the longevity of its seed in the soil and its reproductive ability. This study compared seed longevity of sulfonylurea-susceptible (S) and -resistant (R) biotypes of prickly lettuce in soil at three depths and two locations. Seed longevity in soil was not different between R and S biotypes. Seed longevity was longer when seed were buried compared to seed placed on the soil surface. A field study on seed production showed that prickly lettuce plants produced an average of 14 flower heads and 181 seed per day. Average seed weight was 0.6 mg. No differences were observed in the fecundity or seed viability between the R and S biotypes. However, seed from R biotype plants germinated as fast or faster than seed from S biotype plants.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Leonardo F. Rocha ◽  
Karla L. Gage ◽  
Mirian F. Pimentel ◽  
Jason P. Bond ◽  
Ahmad M. Fakhoury

The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a major soybean-yield-limiting soil-borne pathogen, especially in the Midwestern US. Weed management is recommended for SCN integrated management, since some weed species have been reported to be hosts for SCN. The increase in the occurrence of resistance to herbicides complicates weed management and may further direct ecological–evolutionary (eco–evo) feedbacks in plant–pathogen complexes, including interactions between host plants and SCN. In this review, we summarize weed species reported to be hosts of SCN in the US and outline potential weed–SCN management interactions. Plants from 23 families have been reported to host SCN, with Fabaceae including most host species. Out of 116 weeds hosts, 14 species have known herbicide-resistant biotypes to 8 herbicide sites of action. Factors influencing the ability of weeds to host SCN are environmental and edaphic conditions, SCN initial inoculum, weed population levels, and variations in susceptibility of weed biotypes to SCN within a population. The association of SCN on weeds with relatively little fitness cost incurred by the latter may decrease the competitive ability of the crop and increase weed reproduction when SCN is present, feeding back into the probability of selecting for herbicide-resistant weed biotypes. Therefore, proper management of weed hosts of SCN should be a focus of integrated pest management (IPM) strategies to prevent further eco–evo feedbacks in the cropping system.


Author(s):  
Donald C. Thill ◽  
Carol A. Mallory-Smith ◽  
Leonard L. Saari ◽  
Josephine C. Cotterman ◽  
Michael M. Primiani ◽  
...  

2017 ◽  
Vol 31 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Maxwel C. Oliveira ◽  
Amit J. Jhala ◽  
Todd Gaines ◽  
Suat Irmak ◽  
Keenan Amundsen ◽  
...  

Field and greenhouse experiments were conducted in Nebraska to (1) confirm the 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting resistant-waterhemp biotype (HPPD-RW) by quantifying the resistance levels in dose-response studies, and (2) to evaluate efficacy of PRE-only, POST-only, and PRE followed by POST herbicide programs for control of HPPD-RW in corn. Greenhouse dose-response studies confirmed that the suspected waterhemp biotype in Nebraska has evolved resistance to HPPD-inhibiting herbicides with a 2- to 18-fold resistance depending upon the type of HPPD-inhibiting herbicide being sprayed. Under field conditions, at 56 d after treatment, ≥90% control of the HPPD-RW was achieved with PRE-applied mesotrione/atrazine/S-metolachlor+acetochlor, pyroxasulfone (180 and 270 g ai ha−1), pyroxasulfone/fluthiacet-methyl/atrazine, and pyroxasulfone+saflufenacil+atrazine. Among POST-only herbicide programs, glyphosate, a premix of mesotrione/atrazine tank-mixed with diflufenzopyr/dicamba, or metribuzin, or glufosinate provided ≥92% HPPD-RW control. Herbicide combinations of different effective sites of action in mixtures provided ≥86% HPPD-RW control in PRE followed by POST herbicide programs. It is concluded that the suspected waterhemp biotype is resistant to HPPD-inhibiting herbicides and alternative herbicide programs are available for effective control in corn. The occurrence of HPPD-RW in Nebraska is significant because it limits the effectiveness of HPPD-inhibiting herbicides.


Weed Science ◽  
1995 ◽  
Vol 43 (1) ◽  
pp. 95-102 ◽  
Author(s):  
George P. Stallings ◽  
Donald C. Thill ◽  
Carol A. Mallory-Smith ◽  
Bahman Shafii

The movement of sulfonylurea herbicide-resistant (R) kochia pollen was investigated in a spring barley field near Moscow, ID, using a Nelder plot design in 1991 and 1992. Each 61 m diameter plot had 16 rays spaced 22.5° apart and contained 211 kochia plants. There were 12 susceptible (S) plants and one R plant along each ray. The R and S plants were 1.5 m and 3.0 to 30.5 m from the center of the plot, respectively. Wind direction and speed in the 16 vectors, air and soil temperature, and rainfall were monitored continuously. Mature kochia seed was collected from individual plants, planted in the greenhouse, and sprayed with chlorsulfuron to test for resistant F1progeny. Results from the 2-yr study showed outcrossing of R pollen onto S plants at rates up to 13.1% per plant 1.5 m from the R plants and declining to 1.4% per plant or less 29 m from the R plants. At least 35% of the total R x S crosses occurred in the direction of prevailing southeastward winds. Predicted percentages of R x S crosses per plant ranged from 0.16 to 1.29 at 1.5 m, and 0.00 to 0.06% at 29 m. Thus, resistant kochia pollen can spread the sulfonylurea-resistant trait at least 30 m during each growing season.


Sign in / Sign up

Export Citation Format

Share Document