Spray Deposition of Clopyralid on Honey Mesquite (Prosopis glandulosa)

1991 ◽  
Vol 5 (3) ◽  
pp. 499-503 ◽  
Author(s):  
Rodney W. Bovey ◽  
Raymond A. Stermer ◽  
Louis F. Bouse

Greenhouse and laboratory experiments were conducted to evaluate the influence of clopyralid formulation, spray droplet size, and spray volume on deposit of clopyralid on greenhouse-grown honey mesquite. The addition of surfactant WK at 0.5% (v/v) of the spray solution caused a twofold increase in deposition of spray of the monoethanolamine salt (MEA) of clopyralid but not the oleylamine salt (OLA). There were no differences in spray deposit between spray droplet size spectrums of 160 or 330 μm Dv.5or spray solution applications of 47 or 187 L ha-1. Dye and gas chromatography measurements of spray deposit of clopyralid compared favorably except where surfactant WK was used with the OLA formulation.

Weed Science ◽  
1987 ◽  
Vol 35 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Rodney W. Bovey ◽  
Hugo Hein ◽  
Robert E. Meyer ◽  
L. Fred Bouse

The addition of surfactant (trimethylnonylpolyethoxyethanol) at 0.5% (v/v) of the spray solution caused a twofold increase in the deposit of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) applied at 0.14 or 0.28 kg ae/ha on greenhouse-grown honey mesquite (Prosopis glandulosaTorr. # PRCJG) and increased transport into the plants compared to clopyralid applied alone. Application of equal rates of benazolin [4-chloro-2-oxo-3(2H)-benzothiazoleacetic acid] with clopyralid at 0.28 + 0.28 kg/ha enhanced transport of clopyralid into honey mesquite. Spray deposit, absorption, and translocation of clopyralid was unaffected by addition of 0.5% (v/v) of d'limonene (4-isopropenyl-1-methyl-cyclohexane). Greater spray deposit of clopyralid on plant surfaces after addition of surfactant was associated with reduced liquid surface tension and greater percentage of spray volume in small droplets (<204-μm diam).


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 658-664 ◽  
Author(s):  
Rodney W. Bovey ◽  
Eric Franz ◽  
Steven G. Whisenant

Greenhouse and laboratory experiments were conducted to evaluate the influence of two organosilicone surfactants and spray nozzle types on the spray deposition, absorption, translocation, and efficacy of the monoethanolamine salt of clopyralid on honey mesquite. Sylgard 309 or Silwet L-77 added to the spray solution at 0.1, 025 and 0.5% by vol did not increase spray deposition, absorption, translocation, or phytotoxicity of clopyralid applied at 140 g ae ha-1on honey mesquite compared to no surfactant An air-assist spray nozzle at 9.4 L ha-1by vol resulted in greater initial clopyralid deposit on honey mesquite than hydraulic nozzles at 9.4 or 187 L ha-1by vol, but air-assist application did not increase phytotoxicity compared to hydraulic nozzles.


2018 ◽  
Vol 61 (6) ◽  
pp. 1881-1888
Author(s):  
Jeng-Liang Lin ◽  
Heping Zhu

Abstract. Understanding reactions of surfactant-amended droplets on difficult-to-wet weed surfaces could help develop application strategies to increase herbicide efficacy. Behaviors of herbicidal droplets containing different emulsifiable anti-evaporation spray adjuvants were investigated by characterizing 250 and 450 µm herbicidal droplet dispersion and fading time on cucurbitaceous leaves placed inside a 20°C chamber at 30% and 60% relative humidity (RH). Droplet maximum coverage area increased with droplet size but not with RH, while droplet fading time increased with both droplet size and RH. Despite 450 µm droplets having greater maximum coverage area than 250 µm droplets, the larger droplets had higher fading rates and lower ratios of maximum coverage area to droplet volume. Droplet maximum coverage area and fading time on leaves were affected by adding spray adjuvants to the herbicide-only solution. The Uptake surfactant was more effective than the other two surfactants (AntiEvap+BS1000 and Enhance) in increasing droplet maximum coverage area and fading time. Compared to the herbicide-only solution, addition of Uptake surfactant to the herbicide solution could increase maximum coverage area by 68% and 52% for 250 and 450 µm droplets, respectively, but addition of AntiEvap+BS1000 or Enhance surfactants did not show significant increase. Similarly, addition of Uptake surfactant to the herbicide-only solution increased droplet fading times by 11.1% and 13.2% at 30% and 60% RH, respectively, for 250 µm droplets and by 34.7% and 2.8% at 30% and 60% RH, respectively, for 450 µm droplets. In contrast, addition of AntiEvap+BS1000 surfactant reduced fading time, and addition of Enhance surfactant did not significantly affect fading time. Therefore, appropriate selection of spray adjuvants for herbicide applications could significantly influence droplet deposit behaviors on cucurbitaceous leaves, leading to improved effectiveness of weed control. Keywords: Herbicide application, Spray deposition, Spray droplet, Surfactant, Weed control.


1993 ◽  
Vol 46 (3) ◽  
pp. 257 ◽  
Author(s):  
S. G. Whisenant ◽  
L. F. Bouse ◽  
R. A. Crane ◽  
R. W. Bovey

2017 ◽  
Vol 92 ◽  
pp. 190-197 ◽  
Author(s):  
Ayrton Berger-Neto ◽  
David de Souza Jaccoud-Filho ◽  
Carlos Rafael Wutzki ◽  
Hamilton Edemundo Tullio ◽  
Marcelo Luiz Cunha Pierre ◽  
...  

Weed Science ◽  
1988 ◽  
Vol 36 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Rodney W. Bovey ◽  
Hugo Hein ◽  
Robert E. Meyer

The addition of surfactant I (trimethylnonylpolyethoxyethanol) or surfactant II (4-isopropenyl-1-methyl cyclohexane) at 0.5% (v/v) to the spray solution or 1:1 mixtures of benazolin [4-chloro-2-oxo-3(2H)-benzothiazole-aceticacid], picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid), or triclopyr {[(3,5,6-trichioro-2-pyridinyl) oxy] acetic acid} with clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) each at 0.28 kg ae/ha enhanced the phytotoxicity of clopyralid on honey mesquite (Prosopis glandulosaTorr. # PRCJG) compared to clopyralid applied alone. Addition of surfactant I, surfactant II, picloram, or triclopyr to clopyralid enhanced its absorption into leaves by 4 h after treatment and movement into upper-stem phloem by all additives by 1 day after treatment. When combined at equal rates, more clopyralid than picloram was transported into stems.


2019 ◽  
Vol 33 (6) ◽  
pp. 773-777
Author(s):  
Megan K. Clayton ◽  
Robert K. Lyons

AbstractHuisache is a major brush problem on native rangelands and pastures in South Texas. Although herbicide applications to foliage provide very high plant-kill levels, the same herbicides have not proven reliable when applied as broadcast ground or aerial foliar treatments. Aerial and ground broadcast herbicide foliar treatments were applied to 31 huisache sites. Soil temperature and soil moisture were measured at a depth of 30 cm at the time of herbicide application. Cumulative rainfall before herbicide application was recorded. Across all aerial treatments, plant mortality was 69% for plants shorter than 2 m versus 40% for plants taller than 2 m. Across all aerial- and ground-treated sites, plants shorter than 2 m had an average 89% mortality when cumulative 2-wk rainfall was at least 50 mm, versus 72% mortality with cumulative rainfall less than 50 mm. Average plant mortality was 84% when 4-wk cumulative rainfall was at least 76 mm, versus 71% with rainfall less than 76 mm; and 85% when, on a dry-to-wet scale of 0 to 10, soil moisture measured at least 8, versus 71% when soil moisture measured less than 8. In a separate aerial trial, plant-mortality effects of spray droplet size (417, 630, and 800 µm) and spray volume (37.4 L ha−1 and 93.5 L ha−1) were replicated and tested at a single study site in 2014. Plant mortality was lowest for the 93.5 L ha−1 and 800 µm treatment. Plant mortality rates for other treatments were similar, demonstrating a greater importance of droplet size than spray volume. Targeting huisache trees shorter than 2 m, when cumulative rainfall has reached at least 50 mm or at least 76 mm 2 or 4 wk before application, respectively, as well as maintaining spray droplet sizes no larger than 630 µm can increase herbicide efficacy with foliar broadcast applications.


2007 ◽  
Vol 21 (1) ◽  
pp. 171-174 ◽  
Author(s):  
Elizabeth J. Jones ◽  
James E. Hanks ◽  
Gene D. Wills ◽  
Robert E. Mack

Laboratory and field studies were conducted to determine the effect of the drift control adjuvants HM 2005B and HM 9752 on the droplet spectra and efficacy of spray mixtures of a potassium salt formulation of glyphosate. Droplet spectra were examined using a laser spray droplet analyzer. The addition of each adjuvant decreased the percentage of the spray volume in small diam spray droplets (<141μm) and either had no effect or increased glyphosate efficacy. These adjuvants could prove useful for providing management in potential drift situations.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 278
Author(s):  
Chase Allen Samples ◽  
Thomas R. Butts ◽  
Bruno C. Vieira ◽  
Jon Trenton Irby ◽  
Daniel B. Reynolds ◽  
...  

The adoption of auxin-tolerant crops has increased awareness regarding herbicide off-target movement. Deposition aids are promoted as a possible solution to off-target movement, although their effect on spray canopy deposition are not well understood. Studies were conducted to determine the impact of deposition aids tank-mixed with herbicides on spray droplet size and canopy deposition. Commonly used herbicides were applied on soybean and cotton in combination with deposition aids (oil, polymer, and guargum). Interactions between herbicide solution and deposition aid influenced droplet size parameters for both cotton and soybean herbicides tested herein (p ≤ 0.0001). Generally, the addition of polymer and guargum deposition aids increased spray droplet size, whereas the addition of oil deposition aid decreased droplet size for some treatments. When herbicides were combined, the inclusion of deposition aids did not influence overall spray deposition on cotton (p = 0.82) and soybean (p = 0.72). When herbicide solutions were evaluated individually, the advent of deposition aids had inconsistent results with cotton and soybean spray deposition being unaffected, increased, or even decreased depending on the herbicide solution tested. For example, the polymer-based deposition aid increased spray deposition on cotton for applications of glyphosate + dicamba + S-metolachlor resulting in 1640.6 RFU (relative fluorescence units). However, the same deposition aid decreased spray deposition on cotton for applications of glyphosate + dicamba + acetochlor (1179.3 RFU). Although deposition aids influenced spray deposition on cotton and soybean for some herbicide combinations, their use should be determined on a case-by-case scenario.


Sign in / Sign up

Export Citation Format

Share Document