Efficacy of Clomazone Applied at Various Timings in Soybean (Glycine max)

1997 ◽  
Vol 11 (1) ◽  
pp. 105-109
Author(s):  
Steven J. Langton ◽  
R. Gordon Harvey ◽  
John W. Albright

Field studies conducted in 1991 to 1993 evaluated the efficacy of clomazone applied at various timings for weed control in soybean. Clomazone applied 45, 30, 15, or 0 days prior to planting (DPP) provided season-long control of velvetleaf and giant foxtail. In 1991 and 1992 clomazone alone 30 and 45 DPP failed to control redroot pigweed. Clomazone alone 45 DPP failed to control common lambsquarters. In 1991 and 1992 clomazone at 0.84 kg/ha plus metribuzin applied 45 DPP failed to control redroot pigweed. The addition of metribuzin plus chlorimuron to the above clomazone treatments resolved these weed control deficiencies. Weed control in 1993 was nearly complete across all clomazone treatments. In 1993 clomazone treatments which included metribuzin or metribuzin plus chlorimuron applied PPI or PRE reduced yield. Herbicide injury is the likely cause of this reduction because most treatments in 1993 provided 99% control of all weed species.

1993 ◽  
Vol 7 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Anthony F. Dobbels ◽  
George Kapusta

Field studies were conducted at Carbondale and Belleville, IL to evaluate weed control in corn with a total POST herbicide program. Nicosulfuron was applied at 24 and 35 g/ha alone and in combination with 2,4-D, dicamba, bromoxynil, bentazon, atrazine, and bentazon, bromoxynil, and dicamba plus atrazine. Nicosulfuron controlled 98 to 100% of giant foxtail both years at both locations. Control of giant foxtail was reduced when nicosulfuron at 24 g/ha was applied as a tank-mix with atrazine, and with bentazon, bromoxynil, or dicamba plus atrazine at Belleville in 1991. Also, bentazon plus atrazine with nicosulfuron at 35 g/ha reduced control of giant foxtail. Control of common lambsquarters, jimsonweed, and velvetleaf was dependent on nicosulfuron rate, companion herbicide, and growing conditions. Nicosulfuron alone or as a tank-mix with the companion herbicides controlled redroot pigweed 100% at both sites both years but control of yellow nutsedge was less than 50%. Corn yield was related to level of weed control obtained in most instances.


1999 ◽  
Vol 13 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Bryan G. Young ◽  
Stephen E. Hart ◽  
F. William Simmons

Field studies were conducted at Dekalb, Urbana, and Brownstown, IL, in 1996 and 1997 to evaluate corn (Zea mays) injury and weed control from preemergence applications of RPA 201772 alone and tank-mixed with metolachlor, atrazine, or both. No significant corn injury from RPA 201772 was observed at any time for all experiments. Giant foxtail (Setaria faberi) control at 60 days after treatment (DAT) was variable and ranged from 47 to 93% for RPA 201772 applied alone at 105 g ai/ ha. Giant foxtail control of at least 90% was observed by applying metolachlor at 1,120 g ai/ha with 105 g/ha RPA 201772. The addition of atrazine at either 1,120 or 1,680 g ai/ha improved control of giant foxtail compared with RPA 201772 applied alone at 105 g/ha in two of the six studies. RPA 201772 applied at 105 g/ha controlled at least 88% of velvetleaf (Abutilon theophrasti), Pennsylvania smartweed (Polygonum pensylvanicum), and smooth pigweed (Amaranthus hybridus). RPA 201772 controlled 88% or less of common waterhemp (Amaranthus rudis), common ragweed (Ambrosia artemisiifolia), and common cocklebur (Xanthium strumarium). Control of these three species was 92% or greater with RPA 201772 plus atrazine. Control of common lambsquarters (Chenopodium album) was at least 96% with RPA 201772 applied alone at any rate in four of the six studies. However, common lambsquarters control was 68 and 77% for RPA 201772 applied alone at 105 g/ha at Urbana and Brownstown in 1997, respectively, where high common lambsquarters densities were prevalent. Under these conditions, the addition of atrazine to RPA 201772 at 105 g/ha improved control of common lambsquarters. RPA 201772 has excellent potential to provide consistent control of velvetleaf compared with atrazine. In contrast, these studies indicate RPA 201772 may provide inconsistent control of certain weed species in different environments. In order to achieve consistent control of a broad spectrum of weed species, RPA 201772 must be combined with other herbicides.


2011 ◽  
Vol 25 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Mark M. Loux ◽  
Anthony F. Dobbels ◽  
William G. Johnson ◽  
Bryan G. Young

Field studies were conducted in 2007 and 2008 at seven sites in Ohio, Indiana, and Illinois to determine the effect of PRE herbicide and POST application timing on weed control and yield of glyphosate-resistant corn. Levels of PRE herbicide included none; low—atrazine; medium—atrazine and metolachlor; and high—atrazine, mesotrione, and metolachlor. Glyphosate was applied POST when corn was 30 cm tall, or 1 or 2 wk later. Common lambsquarters, giant foxtail, and giant ragweed infested at least six of the seven sites, and other weed species occurred at two to three sites. Control of weeds at the time of POST application ranged from 48 to 91%, 58 to 99%, and 87 to 100% for the low, medium, and high levels of PRE herbicide, respectively, averaged over POST application timing. Control of giant foxtail and redroot pigweed decreased by about 20% between the second and third POST timing, averaged over PRE herbicide, but control of other weeds was similar among timings. Late-season control of common ragweed, velvetleaf, common lambsquarters, and Pennsylvania smartweed exceeded 90%, regardless of PRE herbicide or POST timing. Control of redroot pigweed, ivyleaf morningglory, and giant ragweed was as low as 74, 67, and 83%, respectively, but the high level of PRE herbicide resulted in 90 to 97% control of these weeds. An interaction between PRE herbicide and POST timing for late-season control of giant foxtail, tall waterhemp, and yellow nutsedge reflected the more effective control among POST timings from the higher levels of PRE herbicide. The overall trend in this study was for more effective weed control in PRE/POST herbicide programs with more comprehensive PRE herbicides that have substantial activity on both grass and broadleaf weeds. Highest yield occurred where the PRE treatment consisted of a two- or three-way combination of herbicides applied at 50% of the recommended rate or higher. Yield was reduced at all POST timings with atrazine alone or in the absence of PRE herbicide.


1998 ◽  
Vol 12 (1) ◽  
pp. 32-36 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. Defelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to combinations of glyphosate, metolachlor, 0.5 X and 1 X label rates of chlorimuron plus metribuzin applied prior to planting (PP), and 0.5 X and 1 X label rates of imazethapyr applied early postemergence (EPOST) or postemergence (POST) in no-till narrow-row soybean production. Giant foxtail densities were reduced with sequential PP followed by (fb) EPOST or POST treatments. Large crabgrass was reduced equivalently with all herbicide combinations involving chlorimuron plus metribuzin PP fb imazethapyr. Common cocklebur control was variable but was usually greater with treatments that included imazethapyr. Ivyleaf morningglory densities were not reduced with any herbicide combinations. Sequential PP fb EPOST or POST treatments tended to provide slightly better weed suppression than PP-only treatments, but the difference was rarely significant. Soybean yields with treatments utilizing 0.5 X rates were usually equal to 1 X rates.


1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


1998 ◽  
Vol 12 (2) ◽  
pp. 215-222
Author(s):  
Robin R. Bellinder ◽  
Marija Arsenovic ◽  
Jonathan J. Kirkwyland ◽  
Russell W. Wallace

Following suggested guidelines developed by the Environmental Protection Agency (EPA), comparative snap bean herbicide performance field trials were conducted from 1993 to 1995 in New York. Data were obtained on crop injury, weed control, and weed biomass, and crop yield, quality, and losses during harvest. Trifluralin, EPTC, and pendimethalin applied preplant incorporated (PPI) and applications of metolachlor applied preemergence (PRE) provided less than adequate control of redroot pigweed, common lambsquarters, and hairy galinsoga. Cultivation improved weed control with PPI and PRE applications. Metolachlor + fomesafen PRE provided good control of hairy galinsoga, adequate redroot pigweed control, and marginal control of common lambsquarters. Fomesafen applied postemergence (POST), combinations of metolachlor applied PRE with fomesafen or bentazon applied POST, and fomesafen + bentazon applied POST adequately controlled the three weed species without cultivation. Herbicide treatments had little measurable impact on snap bean quality or losses during harvest. Information from product comparison trials may be useful in developing recommendations for growers but may prove less than adequate in providing data necessary for a thorough evaluation of the relative benefits of individual herbicides as intended by EPA guidelines. Difficulties were encountered in following the guidelines, and costs of conducting the product comparison trials for a single crop in one growing region exceeded $90,000 over 3 yr.


1988 ◽  
Vol 2 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Jerome M. Green ◽  
Timothy T. Obrigawitch ◽  
James D. Long ◽  
James M. Hutchison

Metribuzin and the ethyl ester of chlorimuron were evaluated alone and in combination for preemergence broadleaf weed control in soybeans. Neither herbicide alone controlled all broadleaf weeds tested, but combinations showed both complementary and additive action. Two field studies quantified these interactions on broadleaf weeds and showed that low rates of either herbicide alone controlled Pennsylvania smartweed and redroot pigweed. Metribuzin was more effective than chlorimuron in controlling prickly sida and hemp sesbania, while chlorimuron was more effective on common cocklebur, sicklepod, and ivyleaf and pitted morningglories. Additive action was most important on velvetleaf, sicklepod, annual morningglories, and hemp sesbania. Because the components were both additive and complementary, a range of mixture rates and ratios were more effective for weed control than either herbicide alone.


1999 ◽  
Vol 13 (2) ◽  
pp. 394-398 ◽  
Author(s):  
Comfort M. Ateh ◽  
Robert G. Harvey

Control of natural infestations of common lambsquarters and giant foxtail in 1993, 1994, and 1995 and of velvetleaf in 1994 and 1995 by postemergence application of glyphosate to glyphosate-resistant soybean planted in narrow (20 cm) and wide (76 cm) rows was evaluated. Planting glyphosate-resistant soybean in narrow rows and applying reduced rates of glyphosate when common lambsquarters, giant foxtail, and velvetleaf were at their actively growing stage 3 to 18 cm, 5 to 28 cm, and 3 to 20 cm tall, respectively, resulted in > 90% control. The effect of time of herbicide application was greater than the rate of herbicide application, especially within the wide-row soybean plantings. Applying imazethapyr in combination with glyphosate did not improve weed control or soybean yield compared with glyphosate alone.


1996 ◽  
Vol 10 (4) ◽  
pp. 689-698 ◽  
Author(s):  
Michelle R. Obermeier ◽  
George Kapusta

Field studies were conducted in 1993 and 1994 to evaluate broadleaf weed control in corn with the sulfonylurea herbicide CGA-152005, CGA-152005 was applied at 10 to 50 g ai/ha alone and in combination with 2,4-D, dicamba, or atrazine. No corn injury was observed either year. Metolachlor plus CGA-152005 controlled redroot pigweed, velvetleaf, and common cocklebur 95% or more in 1993 and 1994. Common lambsquarters and ivyleaf morningglory control was dependent on CGA-152005 rate, weed size at application, and growing conditions. In 1994, control of velvetleaf and ivyleaf morningglory with CGA-152005 at 10 or 20 g/ha was less when applied as a tank-mix with atrazine and dicamba compared with when it was applied alone, probably due to antagonism caused by the companion herbicide. Generally, corn yield was related to weed control.


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 7-10 ◽  
Author(s):  
R. B. Taylorson

AbstractGermination of seeds of 10 grass and 33 broadleaved weed species was examined for response to ethylene. Germination was promoted in nine species, inhibited in two, and not affected in the remainder. Of the species promoted, common purslane (Portulaca oleraceaL.), common lambsquarters (Chenopodium albumL.), and several Amaranths, including redroot pigweed (Amaranthus retroflexusL.), were affected most. Transformation of phytochrome to the active form (Pfr) gave interactions that ranged from none to syntergistic with the applied ethylene. In subsequent tests seeds of purslane, redroot pigweed, and giant foxtail (Setaria faberiHerrm.), a species not responsive to ethylene, were examined for germination response to 14 low molecular weight hydrocarbon gases other than ethylene. Some stimulation by the olefins propylene and propadiene was found for purslane and pigweed. Propionaldehyde and butyraldehyde were slightly stimulatory to purslane only.


Sign in / Sign up

Export Citation Format

Share Document