Preemergence Weed Control in Conventional-Till Corn (Zea mays) with RPA 201772

1999 ◽  
Vol 13 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Bryan G. Young ◽  
Stephen E. Hart ◽  
F. William Simmons

Field studies were conducted at Dekalb, Urbana, and Brownstown, IL, in 1996 and 1997 to evaluate corn (Zea mays) injury and weed control from preemergence applications of RPA 201772 alone and tank-mixed with metolachlor, atrazine, or both. No significant corn injury from RPA 201772 was observed at any time for all experiments. Giant foxtail (Setaria faberi) control at 60 days after treatment (DAT) was variable and ranged from 47 to 93% for RPA 201772 applied alone at 105 g ai/ ha. Giant foxtail control of at least 90% was observed by applying metolachlor at 1,120 g ai/ha with 105 g/ha RPA 201772. The addition of atrazine at either 1,120 or 1,680 g ai/ha improved control of giant foxtail compared with RPA 201772 applied alone at 105 g/ha in two of the six studies. RPA 201772 applied at 105 g/ha controlled at least 88% of velvetleaf (Abutilon theophrasti), Pennsylvania smartweed (Polygonum pensylvanicum), and smooth pigweed (Amaranthus hybridus). RPA 201772 controlled 88% or less of common waterhemp (Amaranthus rudis), common ragweed (Ambrosia artemisiifolia), and common cocklebur (Xanthium strumarium). Control of these three species was 92% or greater with RPA 201772 plus atrazine. Control of common lambsquarters (Chenopodium album) was at least 96% with RPA 201772 applied alone at any rate in four of the six studies. However, common lambsquarters control was 68 and 77% for RPA 201772 applied alone at 105 g/ha at Urbana and Brownstown in 1997, respectively, where high common lambsquarters densities were prevalent. Under these conditions, the addition of atrazine to RPA 201772 at 105 g/ha improved control of common lambsquarters. RPA 201772 has excellent potential to provide consistent control of velvetleaf compared with atrazine. In contrast, these studies indicate RPA 201772 may provide inconsistent control of certain weed species in different environments. In order to achieve consistent control of a broad spectrum of weed species, RPA 201772 must be combined with other herbicides.


2018 ◽  
Vol 10 (10) ◽  
pp. 32
Author(s):  
O. Adewale Osipitan ◽  
Jon E. Scott ◽  
Stevan Z. Knezevic

Tolpyralate, an HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitor, is a relatively new herbicide for weed control in corn. Field studies were conducted in 2015 and 2016 to evaluate the effective dose of tolpyralate applied alone or mixed with atrazine for weed control in corn. The treatments included seven rates (0, 5, 20, 29, 40, 50 and 100 g ai ha-1) of tolpyralate applied alone or mixed with a constant rate (560 g ai ha-1) of atrazine. The evaluated weed species were common waterhemp (Amaranthus rudis Sauer), common lambsquarters (Chenopodium album L.), velvetleaf (Abutilon theophrasti Medik), henbit (Lamium amplexicaule L.) and green foxtail (Setaria viridis L.). Overall, POST-application of tolpyralate resulted in 58-94% visual weed control when applied alone; whereas, addition of atrazine provided 71-100% control of same species. Calculated dose of 19-31 g ai ha-1 (ED90) of tolpyralate applied alone provided 90% visual control of waterhemp, lambsquaters, henbit, and velvetleaf. Whereas, addition of atrazine resulted in significantly lower dose of 11-17 g ai ha-1 for the same level of control, suggesting synergy between the two herbicides.



1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.



Weed Science ◽  
1974 ◽  
Vol 22 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Robert N. Andersen ◽  
William E. Lueschen ◽  
Dennis D. Warnes ◽  
Wallace W. Nelson

In field studies, bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-(4)3H-one 2,2-dioxide] was applied as postemergence sprays over the top of weeds and soybeans[Glycine max(L.) Merr.]. Bentazon at 0.84 to 1.68 kg/ha applied as an early postemergence treatment controlled wild mustard[Brassica kaber(DC.) L.C. Wheeler var.pinnatifida(Stokes) L.C. Wheeler], common ragweed (Ambrosia artemisiifoliaL.), velvetleaf (Abutilon theophrastiMedic.), Pennsylvania smartweed, (Polygonum pensylvanicumL.), common cocklebur (Xanthium pensylvanicumWallr.), and wild common sunflower (Helianthus annuusL.). Pigweeds (Amaranthussp.) were controlled by applications in the three true-leaf stage but became more resistant at later stages. Control of common lambsquarters (Chenopodium albumL.) was erratic. The optimum time for controlling weeds with bentazon was around the first trifoliolate stage of soybeans. Rainfall within several hours after treatment reduced weed control. Eight yield studies, two of which included eight cultivars, were conducted on weed-free soybeans. In none were yields reduced significantly by bentazon at 3.36 kg/ha (the highest rate studied). Eight yield studies were conducted on soybeans infested with common cocklebur or velvetleaf. Weed control was generally excellent with 0.84 kg/ha of bentazon. Where infestations were sufficient to reduce yields, bentazon treatments increased the yields to levels generally comparable with those of the handweeded checks. One exception was an application of bentazon to soybeans growing in a low area that was periodically flooded by heavy rains. In that experiment the benefit of controlling common cocklebur was offset by bentazon injury to the soybeans, and yields from the treated plots were about the same as those of the weedy check.



2015 ◽  
Vol 95 (6) ◽  
pp. 1199-1204 ◽  
Author(s):  
Kimberly D. Belfry ◽  
Kristen E. McNaughton ◽  
Peter H. Sikkema

Belfry, K. D., McNaughton, K. E. and Sikkema, P. H. 2015. Weed control in soybean using pyroxasulfone and sulfentrazone. Can. J. Plant Sci. 95: 1199–1204. Pyroxasulfone and sulfentrazone are new herbicides currently being evaluated for weed control in soybean [Glycine max (L.) Merr.] in Ontario, Canada. Seven experiments were conducted over a 3-yr period (2011 to 2013) at Ridgetown and Exeter, Ontario, to evaluate weed management using pyroxasulfone, sulfentrazone and their tank-mixes relative to the industry standard, imazethapyr plus metribuzin. Tank-mixing pyroxasulfone and sulfentrazone provided up to 97, 46, 60, 100 and 71% control of common lambsquarters (Chenopodium album L.), common ragweed (Ambrosia artemisiifolia L.), green foxtail [Setaria viridis (L.) Beauv.], Powell amaranth [Amaranthus powellii (S.) Wats.] and velvetleaf (Abutilon theophrasti Medic.), respectively, at 2 wk after treatment. Control with pyroxasulfone and sulfentrazone was improved when tank-mixed, relative to application of each herbicide separately. Although control was variable across weed species, no difference in control was identified between pyroxasulfone plus sulfentrazone and imazethapyr plus metribuzin. Soybean yield was up to 2.7, 2.4 and 2.9 t ha−1 for pyroxasulfone, sulfentrazone and pyroxasulfone plus sulfentrazone application, yet imazethapyr plus metribuzin provided the highest yield (3.3 t ha−1). This research demonstrates that pyroxasulfone plus sulfentrazone may be used as a valuable weed control option in soybean; however, weed community composition may limit herbicidal utility.



1993 ◽  
Vol 7 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Anthony F. Dobbels ◽  
George Kapusta

Field studies were conducted at Carbondale and Belleville, IL to evaluate weed control in corn with a total POST herbicide program. Nicosulfuron was applied at 24 and 35 g/ha alone and in combination with 2,4-D, dicamba, bromoxynil, bentazon, atrazine, and bentazon, bromoxynil, and dicamba plus atrazine. Nicosulfuron controlled 98 to 100% of giant foxtail both years at both locations. Control of giant foxtail was reduced when nicosulfuron at 24 g/ha was applied as a tank-mix with atrazine, and with bentazon, bromoxynil, or dicamba plus atrazine at Belleville in 1991. Also, bentazon plus atrazine with nicosulfuron at 35 g/ha reduced control of giant foxtail. Control of common lambsquarters, jimsonweed, and velvetleaf was dependent on nicosulfuron rate, companion herbicide, and growing conditions. Nicosulfuron alone or as a tank-mix with the companion herbicides controlled redroot pigweed 100% at both sites both years but control of yellow nutsedge was less than 50%. Corn yield was related to level of weed control obtained in most instances.



1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.



1995 ◽  
Vol 9 (4) ◽  
pp. 728-735 ◽  
Author(s):  
Robert J. Parks ◽  
William S. Curran ◽  
Gregory W. Roth ◽  
Nathan L. Hartwig ◽  
Dennis D. Calvin

Greenhouse studies assessed the susceptibility of three common lambsquarters biotypes to foliar-applied bromoxynil, dicamba, and thifensulfuron. Field studies evaluated the effectiveness of the same herbicides in conjunction with atrazine and row cultivation for the control of common lambsquarters in corn. In the field, bromoxynil was applied at 140, 280, and 420 g/ha, dicamba at 140, 280, and 560 g/ha, and thifensulfuron at 2, 3, and 4 g/ha. In the greenhouse, bromoxynil and thifensulfuron reduced common lambsquarters growth by at least 55%, while dicamba reduced growth 45% or less. Two of the three biotypes were resistant to atrazine. In the field, weed control was up to 70% better in cultivated plots than in noncultivated plots. Cultivation sometimes promoted additional weed emergence, but later emerging weeds rarely reached reproductive maturity. Atrazine improved the level of weed control only if triazine-susceptible weeds were present. The lowest rates of bromoxynil and dicamba (140 g/ha) controlled common lambsquarters 85% or greater even without cultivation, whereas control with the low rate of thifensulfuron (2 g/ha) was acceptable (greater than 85%) 8 wk after planting only in combination with cultivation. Combinations of reduced herbicide rates and mechanical cultivation provided effective, alternative control strategies for both triazine-resistant and susceptible common lambsquarters.



1999 ◽  
Vol 13 (4) ◽  
pp. 691-696 ◽  
Author(s):  
Ronald F. Krausz ◽  
George Kapusta ◽  
Joseph L. Matthews ◽  
John L. Baldwin ◽  
Jason Maschoff

Field studies were conducted in 1996 and 1997 at Belleville and Pawnee, IL, to evaluate single and sequential applications of glufosinate on tolerance of glufosinate-resistant corn and annual weed control. Glufosinate caused 0 to 13% corn injury 7 days after treatment (DAT) and 0 to 6% corn injury 28 DAT. Injury was characterized as stunting with glufosinate. Glufosinate at 400 to 1,200 g ai/ha did not reduce final corn height or grain yield. At Pawnee in both years and at Belleville in 1996, a single application of glufosinate at 400 g/ha controlled giant foxtail, velvetleaf, ivyleaf morningglory, and common lambsquarters 85 to 100%. At Belleville in 1997, sequential applications of glufosinate provided greater weed control (87 to 100%) than a single application (0 to 63%) because of weed emergence after application. Weed control with a single application of glufosinate or with nicosulfuron plus bromoxynil was similar at both locations. Height and grain yield of glufosinate-resistant corn were not different from that of glufosinate-susceptible corn (isoline of glufosinate-resistant corn).



1997 ◽  
Vol 11 (1) ◽  
pp. 105-109
Author(s):  
Steven J. Langton ◽  
R. Gordon Harvey ◽  
John W. Albright

Field studies conducted in 1991 to 1993 evaluated the efficacy of clomazone applied at various timings for weed control in soybean. Clomazone applied 45, 30, 15, or 0 days prior to planting (DPP) provided season-long control of velvetleaf and giant foxtail. In 1991 and 1992 clomazone alone 30 and 45 DPP failed to control redroot pigweed. Clomazone alone 45 DPP failed to control common lambsquarters. In 1991 and 1992 clomazone at 0.84 kg/ha plus metribuzin applied 45 DPP failed to control redroot pigweed. The addition of metribuzin plus chlorimuron to the above clomazone treatments resolved these weed control deficiencies. Weed control in 1993 was nearly complete across all clomazone treatments. In 1993 clomazone treatments which included metribuzin or metribuzin plus chlorimuron applied PPI or PRE reduced yield. Herbicide injury is the likely cause of this reduction because most treatments in 1993 provided 99% control of all weed species.



Weed Science ◽  
1988 ◽  
Vol 36 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Douglas D. Buhler

Application time did not greatly influence control of velvetleaf (Abutilon theophrastiMedik. # ABUTH) or common lambsquarters (Chenopodium albumL. # CHEAL) in no-till corn (Zea maysL. ‘Pioneer 3747’) with fluorochloridone {3-chloro-4-(chloromethyl)-1-[3-(trifluoromethyl) phenyl]-2-pyrrolidinone}. Giant foxtail (Setaria faberiHerrm. # SETFA) control was reduced as much as 25% by 90 days after planting when fluorochloridone was applied early preplant rather than preemergence. Fluorochloridone at 0.8 kg/ha applied preplant or preemergence gave 83% or greater control of common lambsquarters and giant foxtail for the entire growing season. However, velvetleaf control with the same treatments was 61% or less. Fluorochloridone caused minimal corn injury. Greenhouse bioassay indicated that fluorochloridone may carry over and injure soybean[Glycine max(L.) Merr.] the year after application. Imbibition of fluorochloridone by seed of corn and giant foxtail did not reduce germination at concentrations up to 10-3M. Giant foxtail seedling fresh weight was reduced 80% following imbibition of 10-5M fluorochloridone. Corn seedling fresh weight was not reduced by imbibition of up to 10-4M fluorochloridone.



Sign in / Sign up

Export Citation Format

Share Document