Effect of Residual Herbicide and Postemergence Application Timing on Weed Control and Yield in Glyphosate-Resistant Corn

2011 ◽  
Vol 25 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Mark M. Loux ◽  
Anthony F. Dobbels ◽  
William G. Johnson ◽  
Bryan G. Young

Field studies were conducted in 2007 and 2008 at seven sites in Ohio, Indiana, and Illinois to determine the effect of PRE herbicide and POST application timing on weed control and yield of glyphosate-resistant corn. Levels of PRE herbicide included none; low—atrazine; medium—atrazine and metolachlor; and high—atrazine, mesotrione, and metolachlor. Glyphosate was applied POST when corn was 30 cm tall, or 1 or 2 wk later. Common lambsquarters, giant foxtail, and giant ragweed infested at least six of the seven sites, and other weed species occurred at two to three sites. Control of weeds at the time of POST application ranged from 48 to 91%, 58 to 99%, and 87 to 100% for the low, medium, and high levels of PRE herbicide, respectively, averaged over POST application timing. Control of giant foxtail and redroot pigweed decreased by about 20% between the second and third POST timing, averaged over PRE herbicide, but control of other weeds was similar among timings. Late-season control of common ragweed, velvetleaf, common lambsquarters, and Pennsylvania smartweed exceeded 90%, regardless of PRE herbicide or POST timing. Control of redroot pigweed, ivyleaf morningglory, and giant ragweed was as low as 74, 67, and 83%, respectively, but the high level of PRE herbicide resulted in 90 to 97% control of these weeds. An interaction between PRE herbicide and POST timing for late-season control of giant foxtail, tall waterhemp, and yellow nutsedge reflected the more effective control among POST timings from the higher levels of PRE herbicide. The overall trend in this study was for more effective weed control in PRE/POST herbicide programs with more comprehensive PRE herbicides that have substantial activity on both grass and broadleaf weeds. Highest yield occurred where the PRE treatment consisted of a two- or three-way combination of herbicides applied at 50% of the recommended rate or higher. Yield was reduced at all POST timings with atrazine alone or in the absence of PRE herbicide.

1999 ◽  
Vol 13 (4) ◽  
pp. 713-725 ◽  
Author(s):  
Christy L. Sprague ◽  
James J. Kells ◽  
Donald Penner

Field experiments were conducted in 1996, 1997, and 1998 to evaluate weed control and corn tolerance from soil-applied RPA 201772. Treatments alone and in tank mixtures with other corn herbicides were applied preemergence (PRE) at two locations with conventional tillage and at early preplant (EPP) and PRE application timings in no-tillage corn. RPA 201772 was applied alone and in tank mixtures with one-half the typical field rates of other PRE corn herbicides. In conventional tillage experiments in 1996, 1997, and at one location in 1998, all treatments containing RPA 201772 provided > 90% control of common lambsquarters, redroot pigweed, common ragweed, and velvetleaf. In two no-tillage experiments, common lambsquarters and velvetleaf control was > 90%, regardless of application timing. However, control of redroot pigweed and common ragweed varied among years and application timings. Weed control was more variable from herbicide treatments applied EPP compared with the PRE application timing. Giant foxtail control in both tillage systems was rate, timing, and year dependent. RPA 201772 rates higher than 79 g/ha controlled giant foxtail > 85% at three of five locations. At one location, tank mixtures with RPA 201772 increased giant foxtail control. Corn injury occurred in one of two conventional tillage locations and at the no-tillage location in both 1996 and 1997. Injury was most commonly observed in coarse-textured soils with low clay and organic matter and was more severe with higher rates of RPA 201772. Increased corn injury was also observed when RPA 201772 was combined with acetochlor plus dicloramid or BAYFOE 5043 plus metribuzin. Corn injury from RPA 201772 occurred at application rates above the proposed rate for use on corn. In some cases, severe injury to corn reduced corn yield. Injury to corn from RPA 201772 was not unique to any tillage system and was site, year, and rate dependent.


1997 ◽  
Vol 11 (1) ◽  
pp. 105-109
Author(s):  
Steven J. Langton ◽  
R. Gordon Harvey ◽  
John W. Albright

Field studies conducted in 1991 to 1993 evaluated the efficacy of clomazone applied at various timings for weed control in soybean. Clomazone applied 45, 30, 15, or 0 days prior to planting (DPP) provided season-long control of velvetleaf and giant foxtail. In 1991 and 1992 clomazone alone 30 and 45 DPP failed to control redroot pigweed. Clomazone alone 45 DPP failed to control common lambsquarters. In 1991 and 1992 clomazone at 0.84 kg/ha plus metribuzin applied 45 DPP failed to control redroot pigweed. The addition of metribuzin plus chlorimuron to the above clomazone treatments resolved these weed control deficiencies. Weed control in 1993 was nearly complete across all clomazone treatments. In 1993 clomazone treatments which included metribuzin or metribuzin plus chlorimuron applied PPI or PRE reduced yield. Herbicide injury is the likely cause of this reduction because most treatments in 1993 provided 99% control of all weed species.


2013 ◽  
Vol 27 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Andrew R. Kniss ◽  
Dennis C. Odero

Greenhouse and field experiments were conducted to determine whether PRE-applied ethofumesate increased POST spray retention and weed control with glyphosate. In greenhouse studies, ethofumesate was applied PRE at rates from 0 to 224 g ai ha−1followed by POST treatment with either water or glyphosate (840 g ae ha−1) to which a red dye had been added. Plants were immediately washed and spray retention determined spectrophotometrically. Common lambsquarters retained more glyphosate solution compared to water, regardless of PRE ethofumesate rate. Increasing the rate of PRE ethofumesate increased the POST spray retention of both water and glyphosate. PRE application of ethofumesate increased POST spray retention of water by 114% and glyphosate solution by 18% compared to no ethofumesate treatment as determined by nonlinear regression. Ethofumesate rates of 90 g ha−1increased POST spray retention to at least 95% of the total observed response. In field studies, common lambsquarters, redroot pigweed, and hairy nightshade densities were all reduced by ethofumesate, although the duration of ethofumesate effect varied by species and ethofumesate application timing. PRE ethofumesate had no significant effect on hairy nightshade density until after POST glyphosate was applied, whereas common lambsquarters densities were most affected by PRE ethofumesate early in the season. Late-season redroot pigweed density was reduced by ethofumesate regardless of application timing.


1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


1998 ◽  
Vol 12 (2) ◽  
pp. 215-222
Author(s):  
Robin R. Bellinder ◽  
Marija Arsenovic ◽  
Jonathan J. Kirkwyland ◽  
Russell W. Wallace

Following suggested guidelines developed by the Environmental Protection Agency (EPA), comparative snap bean herbicide performance field trials were conducted from 1993 to 1995 in New York. Data were obtained on crop injury, weed control, and weed biomass, and crop yield, quality, and losses during harvest. Trifluralin, EPTC, and pendimethalin applied preplant incorporated (PPI) and applications of metolachlor applied preemergence (PRE) provided less than adequate control of redroot pigweed, common lambsquarters, and hairy galinsoga. Cultivation improved weed control with PPI and PRE applications. Metolachlor + fomesafen PRE provided good control of hairy galinsoga, adequate redroot pigweed control, and marginal control of common lambsquarters. Fomesafen applied postemergence (POST), combinations of metolachlor applied PRE with fomesafen or bentazon applied POST, and fomesafen + bentazon applied POST adequately controlled the three weed species without cultivation. Herbicide treatments had little measurable impact on snap bean quality or losses during harvest. Information from product comparison trials may be useful in developing recommendations for growers but may prove less than adequate in providing data necessary for a thorough evaluation of the relative benefits of individual herbicides as intended by EPA guidelines. Difficulties were encountered in following the guidelines, and costs of conducting the product comparison trials for a single crop in one growing region exceeded $90,000 over 3 yr.


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 7-10 ◽  
Author(s):  
R. B. Taylorson

AbstractGermination of seeds of 10 grass and 33 broadleaved weed species was examined for response to ethylene. Germination was promoted in nine species, inhibited in two, and not affected in the remainder. Of the species promoted, common purslane (Portulaca oleraceaL.), common lambsquarters (Chenopodium albumL.), and several Amaranths, including redroot pigweed (Amaranthus retroflexusL.), were affected most. Transformation of phytochrome to the active form (Pfr) gave interactions that ranged from none to syntergistic with the applied ethylene. In subsequent tests seeds of purslane, redroot pigweed, and giant foxtail (Setaria faberiHerrm.), a species not responsive to ethylene, were examined for germination response to 14 low molecular weight hydrocarbon gases other than ethylene. Some stimulation by the olefins propylene and propadiene was found for purslane and pigweed. Propionaldehyde and butyraldehyde were slightly stimulatory to purslane only.


2009 ◽  
Vol 23 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Scott L. Bollman ◽  
Christy L. Sprague

Field trials were conducted to determine if tillage and soil-applied herbicides had an effect on weed control and sugarbeet growth with a micro-rate herbicide program. Sugarbeet emergence was earlier in the moldboard plowed system compared with the chisel plowed system at three of four sites. Conditions were dry and sugarbeets emerged 5 d later in the moldboard plowed system compared with the chisel plowed system at the fourth site. Even though the rate of sugarbeet emergence differed between tillage systems at all four sites, final sugarbeet populations did not differ at two of the four sites. Sugarbeet injury from PRE treatments ofS-metolachlor, ethofumesate, and ethofumesate plus pyrazon, followed by four POST micro-rate applications, ranged from 11 to 27% and 1 to 18% in the chisel and moldboard plowed systems, respectively, 6 wk after planting (WAP). Under wet conditions, sugarbeet stand was reduced and injury was greatest from PRE applications ofS-metolachlor. Common lambsquarters, pigweed (redroot pigweed and Powell amaranth), and giant foxtail control in mid-August was consistently higher when a PRE herbicide was applied prior to micro-rate herbicide treatments. Even though there were differences between PRE and no-PRE treatments with respect to sugarbeet injury and weed control, recoverable white sucrose yield did not differ between herbicide treatments. However, recoverable white sucrose yield was greater in the moldboard plowed treatments compared with the chisel plowed treatments at three out of the four sites.


2012 ◽  
Vol 26 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Laura E. Lindsey ◽  
Wesley J. Everman ◽  
Andrew J. Chomas ◽  
James J. Kells

Field studies were conducted from 2007 to 2009 in East Lansing, MI to evaluate three residual herbicide programs, three POST herbicide application timings, and two POST herbicides in glyphosate- and glufosinate-resistant corn. Herbicide programs included a residual PRE-applied herbicide followed by (fb) POST application (residual fb POST), a residual herbicide tank-mixed with a POST herbicide (residual + POST), and a nonresidual POST. Three POST herbicide application timings included early POST (EP), mid-POST (MP), and late POST (LP) at an average corn growth stage of V3/V4, V4/V5, and V5/V6, respectively. The two POST herbicides evaluated were glyphosate and glufosinate. Control of common lambsquarters and giant foxtail was evaluated 28 d after the LP application. Glyphosate often provided greater weed control than glufosinate. The LP application resulted in greater giant foxtail control compared with the EP application timing, which may be attributed to control of late-emerging weeds. The EP application timing improved common lambsquarters control compared with the LP application timing. The residual + POST program resulted in greater weed control compared with the residual fb POST program in all years. The effect of residual herbicide program, POST herbicide, and POST application timing on corn grain yield varied by year. In 2007, the use of glyphosate resulted in higher grain yield compared with glufosinate. In 2008, corn grain yield was the highest in the PRE fb POST program and with POST applications at EP and MP. To provide the most consistent weed control and minimize the likelihood of grain yield reductions, a PRE fb POST program applied at EP or MP is recommended.


2012 ◽  
Vol 26 (4) ◽  
pp. 657-660 ◽  
Author(s):  
Andrew P. Robinson ◽  
David M. Simpson ◽  
William G. Johnson

The introduction of 2,4-D-resistant crops stacked with glyphosate resistance will enable the use of 2,4-D and glyphosate for weed control in corn, cotton, and soybean. Because there is little reported on the effectiveness of 2,4-D plus glyphosate on summer annual weed control, the objective was to evaluate 2,4-D and glyphosate tank mixtures on summer annual weed control. Six rates of 2,4-D (0, 280, 420, 560, 840, and 1,120 g ae ha−1) and three rates of glyphosate (0, 840, and 1,120 g ae ha−1) were applied to common lambsquarters, common waterhemp, giant ragweed, giant foxtail, and velvetleaf. Glyphosate at 840 g ha−1controlled all weeds 94 to 100%. Giant ragweed was controlled 99 to 100% by 2,4-D alone when rates were 280 g ha−1or higher. Common lambsquarters, common waterhemp, and velvetleaf control increased as 2,4-D rates increased, with 1,120 g ha−1providing 90 to 94% control.


1998 ◽  
Vol 12 (2) ◽  
pp. 293-299 ◽  
Author(s):  
Kelly A. Nelson ◽  
Karen A. Renner

Field and greenhouse experiments were conducted to evaluate postemergence (POST) soybean injury and weed control with CGA-277476 and cloransulam-methyl alone and in tank mixtures. In the field, visible soybean injury was 12 to 14% from CGA-277476 and 9 to 13% from cloransulam-methyl 7 d after treatment. Tank mixtures of either herbicide with acifluorfen or acifluorfen plus thifensulfuron were more injurious than CGA-277476 or cloransulam-methyl applied alone. Both CGA-277476 and cloransulam-methyl reduced velvetleaf dry weight 82%, and cloransulam-methyl reduced common ragweed dry weight 92%. Neither herbicide adequately controlled common lambsquarters, redroot pigweed, nor eastern black nightshade. The addition of acifluorfen to the spray solution improved common ragweed, common lambsquarters, redroot pigweed, and eastern black nightshade control with CGA-277476 and improved common lambsquarters, redroot pigweed, and eastern black nightshade control with cloransulam-methyl. Tank mixing thifensulfuron with CGA-277476 or cloransulam-methyl increased common lambsquarters and redroot pigweed control. In the greenhouse, CGA-277476 at 20 g ai/ha reduced velvetleaf dry weight 98%, and 79 g/ha was required to reduce common ragweed dry weight 93%. Cloransulam-methyl at 4.4 g ai/ha reduced velvetleaf dry weight 98% and common ragweed dry weight 94% at 8.8 g/ha. Chlorimuron reduced yellow nutsedge dry weight more than CGA-277476 or cloransulam-methyl. Antagonism of POST graminicide activity by CGA-277476 was grass species and graminicide related. CGA-277476 reduced giant foxtail control by clethodim but not by quizalofop. Cloransulam-methyl tank mixed with clethodim or quizalofop controlled giant foxtail.


Sign in / Sign up

Export Citation Format

Share Document