Weed Community and Species Response to Crop Rotation, Tillage, and Nitrogen Fertility

1998 ◽  
Vol 12 (3) ◽  
pp. 531-536 ◽  
Author(s):  
Randy L. Anderson ◽  
Don L. Tanaka ◽  
Al L. Black ◽  
Edward E. Schweizer

Producers in the northern Great Plains are exploring alternative crop rotations, with the goal of replacing spring wheat-fallow. We characterized the weed associations occurring with tillage system and nitrogen level in two rotations, spring wheat (SW)-fallow (F) and SW-winter wheat (WW)-sunflower (SUN). Weed density was measured 10 yr after initiation of the study. With both rotations, weed community density was highest with no-till. For SW-F, green foxtail, yellow foxtail, and fairy candelabra comprised 99% of the weed community, whereas 13 species were observed in SW-WW-SUN. Fairy candelabra, a rangeland species, was observed only in the no-till system of SW-F. In SW-WW-SUN, no-till favored kochia, Russian thistle, and foxtails, whereas common lambsquarters and annual sowthistle were more common in tilled systems. Nitrogen fertilizer increased crop competitiveness in SW-WW-SUN with no-till, subsequently reducing weed density. Cultural strategies that disrupt weed associations will aid producers in managing weeds.

Weed Science ◽  
1991 ◽  
Vol 39 (1) ◽  
pp. 83-90 ◽  
Author(s):  
William W. Donald ◽  
Tony Prato

High herbicide costs and uncertainty about annual weed control at planting have limited adoption of no-till spring wheat production systems in the northern Great Plains. Chlorsulfuron, metsulfuron, and CGA-131036 at 10 to 20 g ai ha–1plus nonionic surfactant generally controlled both emerged kochia and wild mustard equally well (>80%) whether or not combined with glyphosate at 250 g ha–1plus nonionic surfactant. In two of three trials persistent phytotoxic residues of these sulfonylurea herbicides in soil controlled both weeds better in midseason and early summer 1 yr after treatment than did glyphosate, which has only foliar activity. While the absolute net returns of different treatments varied among herbicides, relative net returns were insensitive to changes in either herbicide or wheat price. Herbicide use tended to boost net returns for no-till spring wheat in years with good weather but depressed net returns in a drought year. Chlorsulfuron at 10 and 20 g ha–1increased net returns in all three trials. Metsulfuron and combinations of either metsulfuron or chlorsulfuron with glyphosate had variable effects on net returns.


1990 ◽  
Vol 4 (2) ◽  
pp. 318-321 ◽  
Author(s):  
William W. Donald

Primary tillage is an inexpensive method to control foxtail barley, a perennial bunchgrass which is an increasing concern to no-till cereal farmers in the Northern Great Plains. Moldboard plowing or chisel plowing in fall followed by field cultivation-harrowing in spring effectively controlled established foxtail barley on previously untilled sites before planting spring wheat. In contrast, chisel plowing in spring followed by field cultivation-harrowing did not control this weed completely.


1998 ◽  
Vol 12 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Kenneth J. Kirkland ◽  
Hugh J. Beckie

The contribution of nitrogen (N) fertilizer placement to management of annual weeds in spring wheat grown under two tillage systems was examined at sites located in three ecoregions of the northern Great Plains from 1994 to 1996. The effect of three different fertilizer placements on narrowleaf and broadleaf weed emergence, growth, and N uptake were determined in a no-till and a conventional tillage system. Fertilizer was broadcast, subsurface-banded in the spring prior to seeding, or side-banded at the time of seeding. Tillage system generally did not influence weed and crop response to fertilizer placement. Broadcast-applied fertilizer was more effective than banded fertilizer in promoting wild oat and broadleaf weed emergence and growth over the growing season. Weed densities, biomass, and N uptake measured early in the growing season averaged 20 to 40% less, and grain yield of wheat at maturity averaged 12% higher where fertilizer was side-banded compared to broadcast. In contrast, the addition of fertilizer, regardless of placement, was detrimental to green foxtail because of enhanced crop competitiveness. Banding fertilizer at recommended rates can be an effective cultural practice for managing weeds in no-till and conventional tillage wheat-cropping systems in semiarid to subhumid regions of the northern Great Plains, but it is not reliable when used as the sole method of weed management.


1996 ◽  
Vol 10 (4) ◽  
pp. 744-749 ◽  
Author(s):  
R. L. Anderson ◽  
D. C. Nielsen

Seedling emergence was characterized for five weeds that infest summer annual crops in the central Great Plains as affected by crop canopy or tillage. The study was established in winter wheat stubble between 1987 and 1990, with seedling emergence recorded weekly between April 1 and November 1. Kochia emerged primarily from early April to late June, whereas green foxtail, wild-proso millet, and redroot pigweed began emerging in late May and continued until August. Volunteer wheat emerged throughout the growing season. Tillage did not affect the emergence pattern of any species, but the numbers of kochia, volunteer wheat, and green foxtail seedlings were increased in no-till. Conversely, wild-proso millet emergence was greater with tillage. Only volunteer wheat's emergence was affected by crop canopy, as fall emergence of volunteer wheat was more than three times greater in corn than in proso millet.


2008 ◽  
Vol 22 (4) ◽  
pp. 736-740 ◽  
Author(s):  
Randy L. Anderson

This study measured impact of cool-season crops on seedling emergence, survival, and seed production of weeds common in corn and soybean. Weed dynamics were monitored in permanently marked quadrats in winter wheat, spring wheat, and canola. Three species, green foxtail, yellow foxtail, and common lambsquarters, comprised more than 80% of the weeds observed in the study. Seedling emergence was reduced by winter wheat, but not by spring wheat or canola, when compared with adjacent quadrats without a crop canopy. Approximately 10% of seedlings in spring wheat and canola developed into seed-bearing plants, but no seed-bearing plants were present in winter wheat at harvest. Common lambsquarters produced more than 1,100 seeds/plant, whereas a foxtail plant produced 85 seeds, averaged across spring wheat and canola. At harvest, new seedlings were present in all crops; thus, control after harvest will be required to prevent seed production in the fall. Winter wheat may provide an opportunity to disrupt population dynamics of weeds common in corn and soybean without requiring herbicides.


2013 ◽  
Vol 105 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Zhiming Qi ◽  
Patricia N. S. Bartling ◽  
Jalal D. Jabro ◽  
Andrew W. Lenssen ◽  
William M. Iversen ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Stephen D. Merrill ◽  
Mark A. Liebig ◽  
John D. Hendrickson ◽  
Abbey F. Wick

Coal surface mining in northern Great Plains USA led to reclamation experiments with soil respreading. Respread soil depth (RSD) and runoff of water redistribution (WR) effects interacted in original North Dakota studies, complicating interpretations. We determined WR and soil depth/soil quality (SQ) effects on hillslope production patterns for sites with soil wedges (2%–5% slope, 50-m length) over sodic mine spoils. At Zap, cool-season forages crested wheatgrass (CWG: Agropyron cristatum) and Russian wildrye (Psathyrostachys juncea) generally decreased as RSD increased upslope. At Stanton, alfalfa (Medicago sativa), native grasses (Bouteloua spp.), and CWG responded to RSD, increasing 70% to midslope and decreasing further. A SQ index (SQI) based on six indicator properties was highly correlated (r > 0.7) with RSD. Yield regressions with RSD or SQI were generally significant for Stanton forages and for spring wheat (Triticum aestivum) at both sites. Yield regressions with WR index (catchment area-based) indicated dominance of WR effects at Zap. Cool-season forages at Zap evidently responded to springtime runoff, while Stanton forages and spring wheat at both sites used water later in the season and responded to soil depth/SQ effects. Results suggest models for interaction of SQ and landform WR affecting productivity should include plant community composition and water-use information.


2016 ◽  
Vol 30 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Zhenyi Li ◽  
Rene C. Van Acker ◽  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

White bean tolerance and weed control were examined by applying halosulfuron alone or in combination with pendimethalin, dimethenamid-P, orS-metolachlor applied PRE. All herbicides applied alone or in combination caused less than 3% visible injury 1 and 4 wk after emergence (WAE). Halosulfuron applied PRE provided greater than 95% control of common lambsquarters, wild mustard, redroot pigweed, and common ragweed and less than 55% control of green foxtail at 4 and 8 WAE. Weed density and dry weight at 8 WAE paralleled the control ratings. Dry bean yields in halosulfuron plus a soil applied grass herbicide did not differ compared to the weed-free control. Green foxtail competition with halosulfuron PRE applied alone resulted in reduced white bean yield compared to the weed-free control.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Kristin M. Hacault ◽  
Rene C. Van Acker

In the northern region of the northern Great Plains of North America, the relative abundance of dandelion in field crops has increased over the past two decades, and farmers need information to help them to better manage this species and slow its spread. A study was conducted to determine the emergence timing of dandelion from both rootstock and seed, and to investigate the efficacy of preseeding (spring) versus postharvest (autumn) herbicide treatments on dandelion in spring wheat fields. Emergence of dandelion plants from rootstock was very early (mean time to 50% emergence [E50] of 430 growing degree days [GDD] Tbase0 C), while seedling emergence was much later (mean E50of 980 GDD). Dandelion does not have a persistent seed bank, and seedling emergence occurred only after dandelion plants arising from rootstock flowered and shed seed. Herbicide treatments that included glyphosate plus florasulam, glyphosate plus tribenuron, or higher rates of glyphosate alone (≥675 g ae ha−1), provided high levels of dandelion control. Autumn herbicide applications were more effective than spring applications for reducing dandelion infestation levels (both aboveground biomass and density). Autumn herbicide applications came after peak emergence timing for dandelion plants emerging both from rootstock and from seed. Because dandelion is a simple perennial, population spread must be limited by controlling seedlings. Autumn herbicide applications provide control of dandelion seedlings and therefore, should limit dandelion population spread.


Sign in / Sign up

Export Citation Format

Share Document