scholarly journals Soil Quality and Water Redistribution Influences on Plant Production over Low Hillslopes on Reclaimed Mined Land

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Stephen D. Merrill ◽  
Mark A. Liebig ◽  
John D. Hendrickson ◽  
Abbey F. Wick

Coal surface mining in northern Great Plains USA led to reclamation experiments with soil respreading. Respread soil depth (RSD) and runoff of water redistribution (WR) effects interacted in original North Dakota studies, complicating interpretations. We determined WR and soil depth/soil quality (SQ) effects on hillslope production patterns for sites with soil wedges (2%–5% slope, 50-m length) over sodic mine spoils. At Zap, cool-season forages crested wheatgrass (CWG: Agropyron cristatum) and Russian wildrye (Psathyrostachys juncea) generally decreased as RSD increased upslope. At Stanton, alfalfa (Medicago sativa), native grasses (Bouteloua spp.), and CWG responded to RSD, increasing 70% to midslope and decreasing further. A SQ index (SQI) based on six indicator properties was highly correlated (r > 0.7) with RSD. Yield regressions with RSD or SQI were generally significant for Stanton forages and for spring wheat (Triticum aestivum) at both sites. Yield regressions with WR index (catchment area-based) indicated dominance of WR effects at Zap. Cool-season forages at Zap evidently responded to springtime runoff, while Stanton forages and spring wheat at both sites used water later in the season and responded to soil depth/SQ effects. Results suggest models for interaction of SQ and landform WR affecting productivity should include plant community composition and water-use information.

2002 ◽  
Vol 82 (2) ◽  
pp. 307-318 ◽  
Author(s):  
P. R. Miller ◽  
J. Waddington ◽  
C. L. McDonald ◽  
D. A. Derksen

Extension of the commonly used spring wheat (Triticum aestivum L.)-fallow rotation to include broadleaf crops requires information on their effects on a following wheat crop. We grew a spring wheat test crop on the stubbles of wheat and seven broadleaf crops: desi chickpea (Cicer arietinum L.), dry bean (Phaseolus vulgaris L.), dry pea (Pisum sativum L.), lentil (Lens culinaris L.), mustard (Brassica juncea L.), safflower (Carthamus tinctorius L.), and sunflower (Helianthus annuus L.). This study was conducted near Swift Current, SK, from 1993 to 1997, and Congress, SK, from 1995 to 1997. After harvest, soil water differed among crop stubbles and by sampling depth. To the 60-cm depth, only soil under dry bean stubble held more water (8 mm), while soil under lentil, desi chickpea, sunflower and safflower stubbles held less water (6, 8, 9 and 17 mm, respectively) than wheat stubble (P < 0.05). From 60 to 120 cm, soil under dry pea and dry bean held more water (7 and 10 mm, respectively), and under sunflower and safflower stubbles less (7 and 14 mm, respectively), than under wheat stubble (P < 0.05). Lentil, dry bean and dry pea stubbles averaged 5, 6 and 9 kg ha-1 greater soil N in the 0- to 120-cm soil depth than wheat stubble (P < 0.05). The average yield of wheat grown on the four pulse crop stubbles was 21% greater than yields on wheat stubble, but did not differ from the oilseed stubbles (P < 0.01). Compared to wheat stubble, wheat grown on broadleaf crop stubbles had higher grain protein concentrations, increasing by 8 and 5%, for pulses and oilseeds, respectively (P < 0.01). Nitrogen removal in the wheat test crop grain yield averaged 15 kg ha-1 for pulse stubbles compared with wheat stubble. Soil N contribution by pulse stubbles was an important factor contributing to wheat growth under a dryland cropping system on the northern Great Plains. Key words: Crop sequence, spring wheat, pulse crops, N cycling, water use


2013 ◽  
Vol 105 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Zhiming Qi ◽  
Patricia N. S. Bartling ◽  
Jalal D. Jabro ◽  
Andrew W. Lenssen ◽  
William M. Iversen ◽  
...  

1993 ◽  
Vol 50 (9) ◽  
pp. 1844-1856 ◽  
Author(s):  
S. C. Fritz ◽  
S. Juggins ◽  
R. W. Battarbee

The distribution of diatoms with respect to salinity and ionic gradients was studied in lakes of the northern Great Plains of North America. The lakes range from freshwater to hypersaline (0.65–270 g∙L−1) and include a variety of brine types, although the majority are dominated by sulfate salts. Canonical correspondence analysis of diatoms in the surface sediments of 66 lakes and associated water chemistry data indicates that diatom distributions are highly correlated with salinity. The ordination also suggests that brine type forms a significant environmental gradient and separates taxa characteristic of bicarbonate/carbonate lakes from those of sulfate-dominated systems. The salinityoptima and tolerances of diatom species are calculated by weighted averaging regression, and these data provide a tool for the reconstruction of past salinity and the inferance of climatic change in arid and semiarid regions.


1999 ◽  
Vol 52 (3) ◽  
pp. 235 ◽  
Author(s):  
J. F. Karn ◽  
R. E. Ries ◽  
L. Hofmann

Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Kristin M. Hacault ◽  
Rene C. Van Acker

In the northern region of the northern Great Plains of North America, the relative abundance of dandelion in field crops has increased over the past two decades, and farmers need information to help them to better manage this species and slow its spread. A study was conducted to determine the emergence timing of dandelion from both rootstock and seed, and to investigate the efficacy of preseeding (spring) versus postharvest (autumn) herbicide treatments on dandelion in spring wheat fields. Emergence of dandelion plants from rootstock was very early (mean time to 50% emergence [E50] of 430 growing degree days [GDD] Tbase0 C), while seedling emergence was much later (mean E50of 980 GDD). Dandelion does not have a persistent seed bank, and seedling emergence occurred only after dandelion plants arising from rootstock flowered and shed seed. Herbicide treatments that included glyphosate plus florasulam, glyphosate plus tribenuron, or higher rates of glyphosate alone (≥675 g ae ha−1), provided high levels of dandelion control. Autumn herbicide applications were more effective than spring applications for reducing dandelion infestation levels (both aboveground biomass and density). Autumn herbicide applications came after peak emergence timing for dandelion plants emerging both from rootstock and from seed. Because dandelion is a simple perennial, population spread must be limited by controlling seedlings. Autumn herbicide applications provide control of dandelion seedlings and therefore, should limit dandelion population spread.


2009 ◽  
Vol 89 (2) ◽  
pp. 281-288 ◽  
Author(s):  
P. M. Carr ◽  
G. B. Martin ◽  
R. D. Horsley

Tillage is being reduced in semiarid regions. The impact of changing tillage practices on field pea (Pisum sativum L.) performance has not been considered in a major pea-producing area within the US northern Great Plains. A study was conducted from 2000 through 2005 to determine how field pea performance compared following spring wheat (Triticum aestivum L.) in clean-till (CT), reduced-till (RT), and no-till (NT) systems arranged in a randomized complete block at Dickinson in southwestern North Dakota. Seed yield increased over 1600 kg ha-1 in 2000 and almost 400 kg ha-1 in 2003 under NT compared with CT, and by 960 kg ha-1 in 2000 under NT compared with RT (P < 0.05). Differences in seed yield were not detected between tillage systems in other years. Plant establishment was improved as tillage was reduced, averaging 66 plants m-2 under NT and RT compared with 60 plants m-2 under CT management. The soil water conservation that can occur after adopting NT may explain the increased seed yields that occurred in some years. These results suggest that field pea seed yield can be increased by eliminating tillage in semiarid areas of the US northern Great Plains, particularly when dry conditions develop and persist. Key words: Zero tillage, field pea, cropping system, N-fixation, legume


1998 ◽  
Vol 12 (3) ◽  
pp. 531-536 ◽  
Author(s):  
Randy L. Anderson ◽  
Don L. Tanaka ◽  
Al L. Black ◽  
Edward E. Schweizer

Producers in the northern Great Plains are exploring alternative crop rotations, with the goal of replacing spring wheat-fallow. We characterized the weed associations occurring with tillage system and nitrogen level in two rotations, spring wheat (SW)-fallow (F) and SW-winter wheat (WW)-sunflower (SUN). Weed density was measured 10 yr after initiation of the study. With both rotations, weed community density was highest with no-till. For SW-F, green foxtail, yellow foxtail, and fairy candelabra comprised 99% of the weed community, whereas 13 species were observed in SW-WW-SUN. Fairy candelabra, a rangeland species, was observed only in the no-till system of SW-F. In SW-WW-SUN, no-till favored kochia, Russian thistle, and foxtails, whereas common lambsquarters and annual sowthistle were more common in tilled systems. Nitrogen fertilizer increased crop competitiveness in SW-WW-SUN with no-till, subsequently reducing weed density. Cultural strategies that disrupt weed associations will aid producers in managing weeds.


1999 ◽  
Vol 13 (1) ◽  
pp. 43-47 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Beverly R. Durgan

Green and yellow foxtail seed production following harvest of spring wheat is a concern of producers in the northern Great Plains of the United States and the Prairie Provinces of Canada. Experiments were conducted in 1996 and 1997 in three tillage systems, no till (NT), chisel plow (CP), and moldboard plow (MP), at the University of Minnesota West Central Experiment Station, Morris, MN, to determine whether time of glyphosate application or tillage after spring wheat harvest could reduce postharvest foxtail seed production. In both years, hard red spring wheat was planted in late April and a packaged mixture of fenoxaprop and 2,4-D ester and MCPA ester was applied at a rate of 53 g and 81 g and 246 g ai/ha for grass and broadleaf weed control. Following spring wheat harvest, each main plot was subdivided into seven subplots, including an untreated control. One subplot was disked twice at 4 to 6 d after harvest (DAH) of spring wheat, and five other subplots had glyphosate (0.25 kg ai/ ha) applied on different days (1 to 31 DAH). Foxtail seeds were collected from the soil surface following first frost, and the number of green and yellow foxtail seeds were determined. Tillage immediately after spring wheat harvest eliminated foxtail plants, and no new foxtail seedlings emerged in either tilled or glyphosate-treated plots despite ideal postharvest conditions for foxtail germination and emergence in 1997. Most viable green foxtail seeds were consistently obtained in NT plots, whereas yellow foxtail seed production varied among tillage systems. Either tillage soon after spring wheat harvest or glyphosate application within 16 DAH reduced green and yellow foxtail seed production by greater than 70%.


Author(s):  
Maryse Bourgault ◽  
Samuel A. Wyffels ◽  
Julia M. Dafoe ◽  
Peggy F. Lamb ◽  
Darrin L. Boss

Abstract The introduction of cover crops as fallow replacement in the traditional cereal-based cropping system of the Northern Great Plains has the potential to decrease soil erosion, increase water infiltration, reduce weed pressure and improve soil health. However, there are concerns this might come at the cost of reduced production in the subsequent wheat crop due to soil water use by the cover crops. To determine this risk, a phased 2-year rotation of 15 different cover crop mixtures and winter wheat/spring wheat was established at the Northern Agricultural Research Center near Havre, MT from 2012 to 2020, or four rotation cycles. Controls included fallow–wheat and barley–wheat sequences. Cover crops and barley were terminated early July by haying, grazing or herbicide application. Yields were significantly decreased in wheat following cover crops in 3 out of 8 years, up to maximum of 1.4 t ha−1 (or 60%) for winter wheat following cool-season cover crop mixtures. However, cover crops also unexpectedly increased following wheat yields in 2018, possibly due in part to residual fertilizer. Within cool-, mid- and warm-season cover crop groups, individual mixtures did not show significant differences impact on following grain yields. Similarly, cover crop termination methods had no impact on spring or winter wheat grain yields in any of the 8 years considered. Wheat grain protein concentration was not affected by cover crop mixtures or termination treatments but was decreased in winter wheat following barley. Differences in soil water content across cover crop groups were only evident at the beginning of the third cycle in one field, but important reductions were observed below 15 cm in the last rotation cycle. In-season rainfall explained 43 and 13% of the variability in winter and spring wheat yields, respectively, compared to 2 and 1% for the previous year cover crop biomass. Further economic analyses are required to determine if the integration of livestock is necessary to mitigate the risks associated with the introduction of cover crops in replacement of fallow in the Northern Great Plains.


Sign in / Sign up

Export Citation Format

Share Document