Dark-adaptive cone elongation in the blue acara retina is triggered by green-sensitive cones

1993 ◽  
Vol 10 (3) ◽  
pp. 523-527 ◽  
Author(s):  
H.-J. Wagner ◽  
D. Kath ◽  
R.H. Douglas ◽  
M. Kirsch

AbstractIn a dichromatic teleost species, we determined the intensity of light of various wavelengths required to prevent cone elongation by exposing fish at the time of their normal “dusk” phase to monochromatic light (479, 623, and 660 nm) at eight to ten different intensities for 75 min. The positions of single and double cones were measured in tangential sections and expressed as cone indices. At all wavelengths, the spectral responses of both cone types were virtually identical. Furthermore, the sensitivity of the blocking effect was highest at shorter wavelengths. When comparing the relative quantal sensitivities of myoid elongation for the two cone types to the spectral sensitivities of the three types of Aequidens pulcher photoreceptor, we found the closest match between the action spectrum and the absorption spectrum of the green-sensitive single cones. This may indicate that this cone type is capable of reacting directly to decreasing levels of illumination. On the other hand, the identical sensitivity of both cone types argues for an indirect control mechanism of dark-adaptive cone elongation, possibly via a neural pathway involving the inner retinal layers, complementary to the neural control of light adaptation. Green-sensitive single cones are well suited to trigger this response, since (1) their sensitivity is inferior to that of double cones; (2) waters inhabited by the blue acara transmit best at long wavelengths; and (3) at dusk, long-wavelength radiation dominates over other parts of the spectrum. Therefore, green-sensitive cone threshold will be reached first at dusk.

1961 ◽  
Vol 44 (6) ◽  
pp. 1089-1102 ◽  
Author(s):  
Donald Kennedy ◽  
Merle S. Bruno

(1) The spectral sensitivity function for the compound eye of the crayfish has been determined by recording the retinal action potentials elicited by monochromatic stimuli. Its peak lies at approximately 570 mµ. (2) Similar measurements made on lobster eyes yield functions with maxima in the region of 520 to 525 mµ, which agree well with the absorption spectrum of lobster rhodopsin if minor allowances are made for distortion by known screening pigments. (3) The crayfish sensitivity function, since it is unaffected by selective monochromatic light adaptation, must be determined by a single photosensitive pigment. The absorption maximum of this pigment may be inferred with reasonable accuracy from the sensitivity data. (4) The visual pigment of the crayfish thus has its maximum absorption displaced by 50 to 60 mµ towards the red end of the spectrum from that of the lobster and other marine crustacea. This shift parallels that found in both rod and cone pigments between fresh water and marine vertebrates. In the crayfish, however, an altered protein is responsible for the shift and not a new carotenoid chromophore as in the vertebrates. (5) The existence of this situation in a new group of animals (with photoreceptors which have been evolved independently from those of vertebrates) strengthens the view that there may be strong selection for long wavelength visual sensitivity in fresh water.


Author(s):  
S. A. Fridman ◽  
E. Ya. Arapova ◽  
N. V. Mitrofanova ◽  
Yu. P. Timofeev ◽  
V. V. Shchaenko

1992 ◽  
Vol 9 (3-4) ◽  
pp. 335-343 ◽  
Author(s):  
R. H. Douglas ◽  
H.-J. Wagner ◽  
M. Zaunreiter ◽  
U. D. Behrens ◽  
M. B. A. Djamgoz

AbstractThe retinae of lower vertebrates undergo a number of structural changes during light adaptation, including the photomechanical contraction of cone myoids and the dispersion of melanin granules within the epithelial pigment. Since the application of dopamine to dark-adapted retinae is known to produce morphological changes that are characteristic of light adaptation, dopamine is accepted as a causal mechanism for such retinomotor movements. However, we report here that in the teleost fish, Aequidens pulcher, the intraocular injection of 6-hydroxydopamine (6-OHDA), a substance known to destroy dopaminergic retinal cells, has no effect on the triggering of light-adaptive retinomotor movements of the cones and epithelial pigment and only slightly depresses the final level of light adaptation reached. Furthermore, the retina continues to show circadian retinomotor changes even after 48 h in continual darkness that are similar in both control and 6-OHDA injected fish. Biochemical assay and microscopic examination showed that 6-OHDA had destroyed dopaminergic retinal cells. We conclude, therefore, that although a dopaminergic mechanism is probably involved in the control of light-induced retinomotor movements, it cannot be the only control mechanism, nor can it be the cause of circadian retinomotor migrations. Interestingly, 6-OHDA injected eyes never reached full retinomotor dark adaptation, suggesting that dopamine has a role to play in the retina's response to darkness.


2018 ◽  
Vol 33 (4) ◽  
pp. 420-431 ◽  
Author(s):  
Jan L. Souman ◽  
Tobias Borra ◽  
Iris de Goijer ◽  
Luc J. M. Schlangen ◽  
Björn N. S. Vlaskamp ◽  
...  

Studies with monochromatic light stimuli have shown that the action spectrum for melatonin suppression exhibits its highest sensitivity at short wavelengths, around 460 to 480 nm. Other studies have demonstrated that filtering out the short wavelengths from white light reduces melatonin suppression. However, this filtering of short wavelengths was generally confounded with reduced light intensity and/or changes in color temperature. Moreover, it changed the appearance from white light to yellow/orange, rendering it unusable for many practical applications. Here, we show that selectively tuning a polychromatic white light spectrum, compensating for the reduction in spectral power between 450 and 500 nm by enhancing power at even shorter wavelengths, can produce greatly different effects on melatonin production, without changes in illuminance or color temperature. On different evenings, 15 participants were exposed to 3 h of white light with either low or high power between 450 and 500 nm, and the effects on salivary melatonin levels and alertness were compared with those during a dim light baseline. Exposure to the spectrum with low power between 450 and 500 nm, but high power at even shorter wavelengths, did not suppress melatonin compared with dim light, despite a large difference in illuminance (175 vs. <5 lux). In contrast, exposure to the spectrum with high power between 450 and 500 nm (also 175 lux) resulted in almost 50% melatonin suppression. For alertness, no significant differences between the 3 conditions were observed. These results open up new opportunities for lighting applications that allow for the use of electrical lighting without disturbance of melatonin production.


1967 ◽  
Vol 10 (4) ◽  
pp. 0462-0463
Author(s):  
T. E. Bond ◽  
S. R. Morrison ◽  
and C. F. Kelly

1959 ◽  
Vol 14 (4) ◽  
pp. 273-278 ◽  
Author(s):  
Jost Bernhard Walther ◽  
Eberhard Dodt

Behaviour experiments have shown that insects react to ultraviolet light. Almost no data are available within this spectral range, however, on the sensitivity of their light sense organs.In this investigation the relative spectral sensitivity (1/Q) of the compound eye of the fly, Calliphora erythrocephala, and various areas of the compound eye of the cockroach, Periplaneta americana, was measured including the ultraviolet range down to 290 mμ. Equal amplitudes of the electroretinogram indicated equal efficiencies of the stimuli.The sensitivity curve in both species shows, besides the known maximum in the blue green, a second maximum in the ultraviolet. This second maximum was found between 341-369 mμ depending on the species and the particular area of the eye. At still shorter wave lengths sensitivity decreases. In the fly eye and the upper part of the cockroach eye the sensitivity maximum in the ultraviolet is higher than in the bluegreen, whereas in the ventral part of the cockroch eye it is lower. Monochromatic light adaptation selectively influences the relative sensitivity of the upper part of the cockroach eye.The sensitivity curves are discussed with regard to visual pigments and types of receptors. Fluorescence of the eye media is considered to have only negligible if any influence on the high sensitivity for ultraviolet light.


2020 ◽  
Vol 91 (7) ◽  
pp. 075103
Author(s):  
S. J. Rezvani ◽  
D. Di Gioacchino ◽  
S. Tofani ◽  
A. D’Arco ◽  
C. Ligi ◽  
...  

2016 ◽  
Vol 737 ◽  
pp. 012018
Author(s):  
V G Dyu ◽  
M G Kisteneva ◽  
S M Shandarov ◽  
S V Smirnov ◽  
A S Akrestina ◽  
...  

2014 ◽  
Vol 21 (3) ◽  
pp. 547-553 ◽  
Author(s):  
Emmanuel O. Jonah ◽  
Margit Härting ◽  
Eric Gullikson ◽  
Andrew Aquila ◽  
David T. Britton

A new small-angle scattering technique in reflection geometry is described which enables a topological study of rough surfaces. This is achieved by using long-wavelength soft X-rays which are scattered at wide angles but in the low-Qrange normally associated with small-angle scattering. The use of nanometre-wavelength radiation restricts the penetration to a thin surface layer which follows the topology of the surface, while moving the scattered beam to wider angles preventing shadowing by the surface features. The technique is, however, only applicable to rough surfaces for which there is no specular reflection, so that only the scattered beam was detected by the detector. As an example, a study of the surfaces of rough layers of silicon produced by the deposition of nanoparticles by blade-coating is presented. The surfaces of the blade-coated layers have rough features of the order of several micrometers. Using 2 nm and 13 nm X-rays scattered at angular ranges of 5° ≤ θ ≤ 51° and 5° ≤ θ ≤ 45°, respectively, a combined range of scattering vector of 0.00842 Å−1≤Q≤ 0.4883 Å−1was obtained. Comparison with previous transmission SAXS and USAXS studies of the same materials indicates that the new method does probe the surface topology rather than the internal microstructure.


2015 ◽  
Vol 115 (1) ◽  
Author(s):  
S. Weidt ◽  
J. Randall ◽  
S. C. Webster ◽  
E. D. Standing ◽  
A. Rodriguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document