The re-establishment of the representation of the dorso-ventral retinal axis in the chiasmatic region of the ferret

1993 ◽  
Vol 10 (5) ◽  
pp. 957-968 ◽  
Author(s):  
Benjamin E. Reese ◽  
Gary E. Baker

AbstractThis study has examined the representation of the dorso-ventral retinal axis in the optic nerve and tract of the ferret, as well as the associated fiber transformations which take place within the chiasmatic region. In one series of experiments, dorsal or ventral retinal lesions were made to induce fiber degeneration along the pathway, from which semi-thin sections were then stained for degenerating myelin. In a second series, implants of the carbocyanine dye, Dil, were made into the caudo-medial or rostro-lateral optic tract in order to label retrogradely the axons as they course through the chiasmatic region. Additional observations were made from the optic pathways of ferrets that had been similarly lesioned or implanted, but employing either a reduced-silver technique to reveal the degenerating axons or horseradish peroxidase as the retrograde label.The axons arising from the dorsal and ventral retina course in the dorsal and ventral parts of the optic nerve posterior to the eye, but as they continue along the nerve they disperse producing a highly impoverished retinotopy in the prechiasmatic portion of the nerve. As they course through the chiasmatic region, however, they become segregated again: dorsal fibers cross the midline relatively caudally while ventral fibers cross further rostrally, although there is overlap between them. Nearer the threshold of the optic tract, the fibers from dorsal and ventral retina undergo a further and more striking segregation, placing the dorsal fibers caudo-medially and the ventral fibers rostro-laterally within the tract. This re-emergence of retinotopic order implicates a fiber-substrate interaction as being responsible for the axonal reordering, and suggests that fiber pre-ordering in the tract contributes to the formation of the orderly projection of the dorso-ventral retinal axis upon central visual targets.

Development ◽  
1984 ◽  
Vol 83 (1) ◽  
pp. 1-14
Author(s):  
J. W. Fawcett ◽  
J. S. H. Taylor ◽  
R. M. Gaze ◽  
P. Grant ◽  
E. Hirst

In juvenile Xenopus retinotopic fibre order in the optic tract near the chiasma was investigated by labelling small groups of optic fibres from peripheral retina with HRP. This selective fibre labelling with HRP was combined with autoradiography following administration of tritiated thymidine to the eye, so that the HRP-labelled fibres could be located within the borders of the optic tract. Fibres arising from the periphery of all four retinal quadrants were superficially located in the optic tract near the chiasma, with dorsal retinal fibres showing the greatest tendency to travel deep in the diencephalon. Retinal lesions closer to the optic nerve head labelled fibres which ran deeper in the optic tract. Near the chiasma, fibres from ventral retina tended to group rostrally while fibres from dorsal retina tended to group caudally. However, no obvious localization of fibres arising in temporal or nasal retina was seen in the lower optic tract.


Development ◽  
1979 ◽  
Vol 50 (1) ◽  
pp. 199-215
Author(s):  
J. G. Steedman ◽  
R. V. Stirling ◽  
R. M. Gaze

A cobalt chloride impregnation technique was applied to the optic nerve in Xenopus tadpoles and the central optic pathways were examined in cleared, whole-mounted preparations, and in thick sections. The overall plan of the optic input was visualized in relation to the outlines of the parts of the brain and details of the structure of the tectal optic neuropil, the neuropil of Bellonci and the basal optic neuropil were seen. The fibres in the main retinotectal tract maintained an orderly disposition with respect to each other, in contrast to the fibres of the basal optic tract, in which no order was apparent. Optic fibres were seen passing caudally from the region of the basal optic neuropil.


Development ◽  
1979 ◽  
Vol 50 (1) ◽  
pp. 253-267
Author(s):  
C. Straznicky ◽  
R. M. Gaze ◽  
T. J. Horder

The formation of the branches of the optic tract has been studied with the use of [3H]- proline autoradiography, during development and during regeneration of the optic nerve in Xenopus with one compound ventral (VV) eye made by the embryonic fusion of two ventral eye fragments. The formation of the optic pathway was abnormal in that the lateral branch failed to develop, suggesting that fibres from a VV retina selectively entered the tectum via the medial branch during development. Three months after section of the optic nerve of a VV eye, regenerated fibres were present both in the contralateral and ipsilateral tecta. On the ipsilateral side regenerated fibres entered the tectum via the medial branch only. Retinal fibres entered the contralateral tectum through both branches in some animals and through the medial branch only in otheis. It is concluded that mechanical factors alone are insufficient to explain the phenomenon of selection of the appropriate medial branch by fibres of ventral retinal origin either during development or in regeneration. Some form of fibre-substrate interaction seems to be necessary; and this ability of fibres from a VV eye to take the path appropriate for ventral retina argues strongly that the VV eye is not a regulated system in terms of cell specificities.


Development ◽  
1987 ◽  
Vol 99 (3) ◽  
pp. 393-410
Author(s):  
J.S. Taylor

This study concerns the retinotopic organization of the ganglion cell fibres in the visual system of the frog Xenopus laevis. HRP was used to trace the pathways taken by fibres from discrete retinal positions as they pass from the retina, along the optic nerve and into the chiasma. The ganglion cell fibres in the retina are arranged in fascicles which correspond with their circumferential positions of origin. Within the fascicles the fibres show little age-related layering and do not have a strict radial organization. As the fascicles of fibres pass into the optic nerve head there is some exchange of position resulting in some loss of the retinal circumferential organization. The poor radial organization of the fibres in the retinal fascicles persists as the fibres pass through the intraocular part of the nerve. At a position just behind the eye there is a major fibre reorganization in which fibres arising from cells of increasingly peripheral retinal locations are found to have passed into increasingly peripheral positions in the nerve. Thus, fibres from peripheral-most retina are located at the nerve perimeter, whilst fibres from central retina are located in the nerve core. It is at this point that the radial, chronotopic, ordering of the ganglion cell axons, found throughout the rest of the optic pathway, is established. This annular organization persists along the length of the nerve until a position just before the nerve enters the brain. Here, fibres from each annulus move to form layers as they pass into the optic chiasma. This change in the radial organization appears to be related to the pathway followed by all newly growing fibres, in the most superficial part of the optic tract, adjacent to the pia. Just behind the eye, where fibres become radially ordered, the circumferential organization of the projection is largely lost. Fibres from every circumferential retinal position, which are of similar radial position, are distributed within the same annulus of the nerve. At the nerve-chiasma junction where each annulus forms a single layer as it enters the optic tract, there is a further mixing of fibres from all circumferential positions. However, as the fibres pass through the chiasma some active pathway selection occurs, generating the circumferential organization of the fibres in the optic tract. Additional observations of the organization of fibres in the optic nerve of Rana pipiens confirm previous reports of a dual representation of fibres within the nerve. The difference in the organization of fibres in the optic nerve of Xenopus and Rana pipiens is discussed.


1988 ◽  
Vol 1 (2) ◽  
pp. 245-248 ◽  
Author(s):  
Glen T. Prusky ◽  
Max S. Cynader

AbstractThe autoradiographic distribution of [3H]nicotine binding sites was examined in the superior colliculus in normal rats and cats, and in animals in which one or both eyes were removed. [3H]Nicotine binding sites in normal animals were densely concentrated in the superficial layers of the colliculus corresponding to the zone of termination of optic nerve fibers. Following bilateral enucleation, [3H]nicotine binding in the superficial collicular layers was drastically reduced. Unilateral enucleation markedly reduced [3H]nicotine binding sites in the colliculus contralateral to the removed eye, with little effect on the ipsilateral colliculus. These results provide further evidence that nicotinic acetylcholine receptors have a presynaptic location on optic tract terminals and may therefore modulate retinotectal transmission in both the rat and cat visual system.


1987 ◽  
Vol 165 (4) ◽  
pp. 1218-1223 ◽  
Author(s):  
V H Perry ◽  
M C Brown ◽  
S Gordon

Using mAbs and immunocytochemistry we have examined the response of macrophages (M phi) after crush injury to the sciatic or optic nerve in the mouse and rat. We have established that large numbers of M phi enter peripheral nerves containing degenerating axons; the M phi are localized to the portion containing damaged axons, and they phagocytose myelin. The period of recruitment of the M phi in the peripheral nerve is before and during the period of maximal proliferation of the Schwann cells. In contrast, the degenerating optic nerve attracts few M phi, and the removal of myelin is much slower. These results show the clearly different responses of M phi to damage in the central and peripheral nervous systems, and suggest that M phi may be an important component of subsequent repair as well as myelin degradation.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 537-553
Author(s):  
M.A. Wilson ◽  
J.S. Taylor ◽  
R.M. Gaze

The structure of the optic chiasma in Xenopus tadpoles has been investigated by light and electron microscopy. Where the optic nerve approaches the chiasma, a tongue of cells protrudes from the periventricular cell mass into the dorsal part of the nerve. Glial processes from this tongue of cells ensheath fascicles of optic axons as they enter the brain. Coincident with this partitioning, the annular arrangement of axons in the optic nerve changes to the laminar organization of the optic tract. Beyond the site of this rearrangement, all newly growing axons accumulate in the ventral-most part of the nerve and pass into the region between the periventricular cells and pia which we have called the ‘bridge’. This region is characterized by a loose meshwork of glial cell processes, intercellular spaces and the presence of both optic and nonoptic axons. In the bridge, putative growth cones of retinal ganglion cell axons are found in the intercellular spaces in contact with both the glia and with other axons. The newly growing axons from each eye cross in the bridge at the midline and pass into the superficial layers of the contralateral optic tracts. As the system continues to grow, previous generations of axon, which initially crossed in the existing bridge, are displaced dorsally and caudally, forming the deeper layers of the chiasma. At their point of crossing in the deeper layers, these fascicles of axons from each eye interweave in an intimate fashion. There is no glial segregation of the older axons as they interweave within the chiasma.


Development ◽  
1986 ◽  
Vol 93 (1) ◽  
pp. 1-28
Author(s):  
Claudia A. O. Stuermer

This study investigates the order of regenerating retinal axons in the goldfish. The spatiotemporal pattern of axon regrowth was assessed by applying horseradish peroxidase (HRP) to regenerating axons in the optic tract at various times after optic nerve section and by analysing the distribution of retrogradely labelled ganglion cells in retina. At all regeneration stages labelled ganglion cells were widely distributed over the retina. There was no hint that axons from central (older) ganglion cells might regrow earlier, and peripheral (younger) ganglion cells later, as occurs in normal development. The absence of an age-related ordering in the regenerated optic nerve was demonstrated by labelling a few axon bundles intraorbitally with HRP (Easter, Rusoff & Kish, 1981) caudal to the previous cut. The retrogradely labelled cells in retina were randomly distributed in regenerates andnot clustered in annuli as in normals. Tracing regenerating axons which were stained anterogradelyfrom intraretinal HRP applications or retrogradely from single labelled tectal fascicles illustrated the fact that the regenerating axons coursed in abnormal routes in the optic nerve and tract. On the surface of the tectum regenerated fibres re-established a fascicle fan. The retinal origin of tectal fascicles was assessed by labelling individual peripheral, intermediate and rostral fascicles with HRP. The retrogradely labelled ganglion cells in the retina were often more widely distributed than in normals, but were mostly found in peripheral, intermediate and central retina, respectively. The order of fibre departure from each tectal fascicle was revealed by placing HRP either on the fascicle's proximal or on its distal half. With proximal labelling sites labelled ganglion cells were found in the temporal and nasal retina, and with distal labelling sites labelled ganglion cells were confined to nasal retina only. Further, the axonal trajectories of anterogradely labelled dorsotemporal retinal ganglion cells were compared to those of dorsonasal retinal ganglion cells in tectal whole mounts. Dorsotemporal axons were confined to the rostral tectal half, whereas dorsonasal axons followed fascicular routes into the fascicles' distal end and reached into caudal tectum. This suggests that the fibres exited along their fascicle's course in a temporonasal sequence. Thus in the tectum, fibres in fascicles restore a gross spatial and age-related order and tend to follow their normal temporonasal sequence of exit.


1990 ◽  
Vol 5 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Glen Jeffery

AbstractThe course of optic axons that take different routes at the chiasm have been traced through horizontally sectioned optic nerves in the cat, after unilateral injections of horseradish peroxide into the optic tract. Behind the eye and for most of the course of the nerve, nearly all of the axons that remain uncrossed at the chiasm are located in a retinotopically appropriate position, in the lateral aspect of the nerve. However, in the most caudal segment of the nerve an increasing proportion of these axons are located in regions that are retinotopically inappropriate. Just before the nerve joins the chiasm, uncrossed axons can be found across the full medio-lateral extent of the nerve, although there is still a relative increase in their density laterally.Labeled axons that cross at the chiasm course in a relatively parallel manner along the greater proportion of the nerve. However, in the caudal segment of the nerve their relative positions change and they appear to course in an irregular manner. This occurs where the uncrossed projection becomes increasingly more widespread.Axons in the optic nerve are grouped into fascicules. This pattern of organization also changes in the caudal region of the nerve. Although clear fascicular patterns are present along the greater part of the nerve, they become progressively less distinct caudally. The change in the pattern of fasciculation occurs over the same region of the nerve as the relative changes in axon trajectory and distribution.These results demonstrate that irrespective of chiasmatic route, optic axons in the cat are reorganized in the caudal segment of the nerve. This reorganization is not confined to changes in relative axon position, but is reflected in the structure of the nerve by the change of axon grouping from a fascicular to a non-fascicular arrangement.


Sign in / Sign up

Export Citation Format

Share Document