The receptive field of the primate P retinal ganglion cell, I: Linear dynamics

1997 ◽  
Vol 14 (1) ◽  
pp. 169-185 ◽  
Author(s):  
Ethan A. Benardete ◽  
Ehud Kaplan

AbstractThe ganglion cells of the primate retina include two major anatomical and functional classes: P cells which project to the four parvocellular layers of the lateral geniculate nucleus (LGN), and M cells which project to the two magnocellular layers. The characteristics of the P-cell receptive field are central to understanding early form and color vision processing (Kaplan et al., 1990; Schiller & Logothetis, 1990). In this and in the following paper, P-cell dynamics are systematically analyzed in terms of linear and nonlinear response properties. Stimuli that favor either the center or the surround of the receptive field were produced on a CRT and modulated with a broadband signal composed of multiple m-sequences (Benardete et al., 1992b; Benardete & Victor, 1994). The first-order responses were calculated and analyzed in this paper (part I). The findings are: (1) The first-order responses of the center and surround depend linearly on contrast. (2) The dynamics of the center and surround are well described by a bandpass filter model. The most significant difference between center and surround dynamics is a delay of approximately 8 ms in the surround response. (3) In the LGN, these responses are attenuated and delayed by an additional 1–5 ms. (4) The spatial transfer function of the P cell in response to drifting sine gratings at three temporal frequencies was measured. This independent method confirmed the delay between the (first-order) responses of the center and surround. This delay accounts for the dependence of the spatial transfer function on the frequency of stimulation.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4859
Author(s):  
Leigh Stanger ◽  
Thomas Rockett ◽  
Alistair Lyle ◽  
Matthew Davies ◽  
Magnus Anderson ◽  
...  

This article elucidates the need to consider the inherent spatial transfer function (blur), of any thermographic instrument used to measure thermal fields. Infrared thermographic data were acquired from a modified, commercial, laser-based powder bed fusion printer. A validated methodology was used to correct for spatial transfer function errors in the measured thermal fields. The methodology was found to make a difference of 40% to the measured signal levels and a 174 °C difference to the calculated effective temperature. The spatial gradients in the processed thermal fields were found to increase significantly. These corrections make a significant difference to the accuracy of validation data for process and microstructure modeling. We demonstrate the need for consideration of image blur when quantifying the thermal fields in laser-based powder bed fusion in this work.


1979 ◽  
Vol 74 (2) ◽  
pp. 275-298 ◽  
Author(s):  
J D Victor ◽  
R M Shapley

We investigated receptive field properties of cat retinal ganglion cells with visual stimuli which were sinusoidal spatial gratings amplitude modulated in time by a sum of sinusoids. Neural responses were analyzed into the Fourier components at the input frequencies and the components at sum and difference frequencies. The first-order frequency response of X cells had a marked spatial phase and spatial frequency dependence which could be explained in terms of linear interactions between center and surround mechanisms in the receptive field. The second-order frequency response of X cells was much smaller than the first-order frequency response at all spatial frequencies. The spatial phase and spatial frequency dependence of the first-order frequency response in Y cells in some ways resembled that of X cells. However, the Y first-order response declined to zero at a much lower spatial frequency than in X cells. Furthermore, the second-order frequency response was larger in Y cells; the second-order frequency components became the dominant part of the response for patterns of high spatial frequency. This implies that the receptive field center and surround mechanisms are physiologically quite different in Y cells from those in X cells, and that the Y cells also receive excitatory drive from an additional nonlinear receptive field mechanism.


1997 ◽  
Vol 14 (1) ◽  
pp. 187-205 ◽  
Author(s):  
Ethan A. Benardete ◽  
Ehud Kaplan

AbstractThe receptive-field properties of retinal ganglion cells (RGCs) provide information about early visual processing. In the primate retina, P cells form the largest class of RGCs (Rodieck, 1988). A detailed exploration of the dynamics of the two subdivisions of the P-cell receptive field—the center and the surround—was undertaken. In the preceding paper (Benardete & Kaplan, 1996), the first-order responses of the center and the surround of P cells were described, which were obtained with a new technique, the multiple m-sequence stimulus (Benardete & Victor, 1994). In this paper, the investigation of P-cell responses measured as S-potentials in the lateral geniculate nucleus (LGN) is continued, and significant nonlinear, second-order responses from the center and the surround are described. These responses are quantified by fitting a mathematical model, the linear-nonlinear-linear (LNL) model (Korenberg, 1973; Korenberg & Hunter, 1986; Victor, 1988) to the data. In a second series of experiments, demonstration that steady illumination of the surround modifies the gain of the center to contrast signals (see also Kaplan & Shapley, 1989) is made. In P ON cells, increasing the steady illumination of the surround decreases the gain and speeds up the center's first-order response. In P OFF cells, increasing the steady illumination of the surround increases the gain of the center while speeding up the response. The results of both sets of experiments are related to the known anatomy and physiology of the P cell.


Author(s):  
Ruohan Li ◽  
Jorge A. Prozzi

The objective of this study is to evaluate the field variability of jointed concrete pavement (JCP) faulting and its effects on pavement performance. The standard deviation of faulting along both the longitudinal and transverse directions are calculated. Based on these, the overall variability is determined, and the required sample sizes needed for a given precision at a certain confidence level are calculated and presented. This calculation is very important as state departments of transportation are required to report faulting every 0.1 mi to the Federal Highway Administration as required by the 2015 FAST Act. On average, twice the number of measurements are needed on jointed reinforced concrete pavements (JRCP) to achieve the same confidence and precision as on jointed plain concrete pavements (JPCP). For example, a sample size of 13 is needed to achieve a 95% confidence interval with a precision of 1.0 mm for average faulting of JPCP, while 26 measurements are required for JRCP ones. Average faulting was found to correlate with several climatic, structural, and traffic variables, while no significant difference was found between edge and outer wheelpath measurements. The application of Portland cement concrete overlay and the use of dowel bars (rather than aggregate interlock) are found to significantly reduce faulting. Older sections located on higher functional classes, and in regions of high precipitation or where the daily temperature change is larger, tend to have higher faulting, and might require larger samples sizes as compared with the rest when faulting surveys are to be conducted.


2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


1939 ◽  
Vol 23 (1) ◽  
pp. 21-39 ◽  
Author(s):  
Aurin M. Chase ◽  
Emil L. Smith

1. Measurements of visual purple regeneration in solution have been made by a procedure which minimized distortion of the results by other color changes so that density changes caused by the regenerating substance alone are obtained. 2. Bleaching a visual purple solution with blue and violet light causes a greater subsequent regeneration than does an equivalent bleaching with light which lacks blue and violet. This is due to a photosensitive substance which has a gradually increasing effective absorption toward the shorter wavelengths. It is uncertain whether this substance is a product of visual purple bleaching or is present in the solution before illumination. 3. The regeneration of visual purple measured at 560 mµ is maximal at about pH 6.7 and decreases markedly at more acid and more alkaline pH's. 4. The absorption spectrum of the regenerating material shows only a concentration change during the course of regeneration, but has a higher absorption at the shorter wavelengths than has visual purple before illumination. 5. Visual purple extractions made at various temperatures show no significant difference in per cent of regeneration. 6. The kinetics of regeneration is usually that of a first order process. Successive regenerations in the same solution have the same velocity constant but form smaller total amounts of regenerated substance. 7. In vivo, the frog retina shows no additional oxygen consumption while visual purple is regenerating.


1997 ◽  
Vol 41 (5) ◽  
pp. 982-986 ◽  
Author(s):  
T P Kanyok ◽  
A D Killian ◽  
K A Rodvold ◽  
L H Danziger

Aminosidine is an older, broad-spectrum aminoglycoside antibiotic that has been shown to be effective in in vitro and animal models against multiple-drug-resistant tuberculosis and the Mycobacterium avium complex. The objective of this randomized, parallel trial was to characterize the single-dose pharmacokinetics of aminosidine sulfate in healthy subjects (eight males, eight females). Sixteen adults (mean [+/- standard deviation] age, 27.6 +/- 5.6 years) were randomly allocated to receive a single, intramuscular aminosidine sulfate injection at a dose of 12 or 15 mg/kg of body weight. Serial plasma and urine samples were collected over a 24-h period and used to determine aminosidine concentrations by high-performance liquid chromatographic assay. A one-compartment model with first-order input, first-order output, and a lag time (Tlag) and with a weighting factor of 1/y2 best described the data. Compartmental and noncompartmental pharmacokinetic parameters were estimated with the microcomputer program WinNonlin. One subject was not included (15-mg/kg group) because of the lack of sampling time data. On average, subjects attained peak concentrations of 22.4 +/- 3.2 microg/ml at 1.34 +/- 0.45 h. All subjects had plasma aminosidine concentrations below 2 microg/ml at 12 h, and all but two subjects (one in each dosing group) had undetectable plasma aminosidine concentrations at 24 h. The dose-adjusted area under the concentration-time curve from 0 h to infinity of aminosidine was identical for the 12- and 15-mg/kg groups (9.29 +/- 1.5 versus 9.29 +/- 2.2 microg x h/ml per mg/kg; P = 0.998). Similarly, no significant differences (P > 0.05) were observed between dosing groups for peak aminosidine concentration in plasma, time to peak aminosidine concentration in plasma, Tlag, apparent clearance, renal clearance, elimination rate constant, and elimination half-life. A significant difference was observed for the volume of distribution (0.35 versus 0.41 liters/kg; P = 0.037) between the 12 and 15 mg/kg dosing groups. Now that comparable pharmacokinetic profiles between dosing groups have been demonstrated, therapeutic equivalency testing via in vitro pharmacokinetic and pharmacodynamic modelling and randomized clinical trials in humans should be conducted.


2009 ◽  
Vol 29 (26) ◽  
pp. 8372-8387 ◽  
Author(s):  
J. D. Crook ◽  
C. M. Davenport ◽  
B. B. Peterson ◽  
O. S. Packer ◽  
P. B. Detwiler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document