Results from a 15-year study on hydrocarbon concentrations in water and sediment from Admiralty Bay, King George Island, Antarctica

2009 ◽  
Vol 21 (3) ◽  
pp. 209-220 ◽  
Author(s):  
Márcia C. Bícego ◽  
Eliete Zanardi-Lamardo ◽  
Satie Taniguchi ◽  
César C. Martins ◽  
Denis A.M. da Silva ◽  
...  

AbstractAdmiralty Bay on the King George Island hosts the Brazilian, Polish and Peruvian research stations as well as the American and Ecuadorian field stations. Human activities in this region require the use of fossil fuels as an energy source, thereby placing the region at risk of hydrocarbon contamination. Hydrocarbon monitoring was conducted on water and sediment samples from the bay over 15 years. Fluorescence spectroscopy was used for the analysis of total polycyclic aromatic hydrocarbons (PAHs) in seawater samples and gas chromatography with flame ionization and/or mass spectrometric detection was used to analyse individual n-alkanes and PAHs in sediment samples. The results revealed that most sites contaminated by these compounds are around the Brazilian and Polish research stations due to the intense human activities, mainly during the summer. Moreover, the sediments revealed the presence of hydrocarbons from different sources, suggesting a mixture of the direct input of oil or derivatives and derived from hydrocarbon combustion. A decrease in PAH concentrations occurred following improvement of the sewage treatment facilities at the Brazilian research station, indicating that the contribution from human waste may be significant.

2015 ◽  
Vol 63 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Arthur José da Silva Rocha ◽  
Marina Tenório Botelho ◽  
Fabio Matsu Hasue ◽  
Maria José de Arruda Campos Rocha Passos ◽  
Caroline Patricio Vignardi ◽  
...  

Series of biomonitoring surveys were undertaken weekly in February 2012 to investigate the genotoxicity of the shallow waters around the Brazilian Antarctic Station "Comandante Ferraz" (EACF). The comet assay was applied to assess the damage to the DNA of hemocytes of the crustacean amphipods Gondogeneia antarctica collected from shallow waters near the Fuel Tanks (FT) and Sewage Treatment Outflow (STO) of the research station, and compare it to the DNA damage of animals from Punta Plaza (PPL) and Yellow Point (YP), natural sites far from the EACF defined as experimental controls. The damage to the DNA of hemocytes of G. antarctica was not significantly different between sites in the biomonitoring surveys I and II. In survey III, the damage to the DNA of animals captured in shallow waters near the Fuel Tanks (FT) and Sewage Treatment Outflow (STO) was significantly higher than that of the control site of Punta Plaza (PPL). In biomonitoring survey IV, a significant difference was detected only between the FT and PPL sites. Results demonstrated that the shallow waters in front of the station may be genotoxic and that the comet assay and hemocytes of G. antarctica are useful tools for assessing genotoxicity in biomonitoring studies of Antarctic marine coastal habitats.


2022 ◽  
Vol 8 ◽  
Author(s):  
Tailisi H. Trevizani ◽  
Rosalinda C. Montone ◽  
Rubens C. L. Figueira

The polar regions are vulnerable to impacts caused by local and global pollution. The Antarctic continent has been considered an environment that has remained little affected by human activities. Direct exposure to contaminants may occur in areas continuously occupied by research stations for several decades. Admiralty Bay on the southeast coast of King George Island, has potential for being affected by human activities due research stations operating in the area, including the Brazilian Commandant Ferraz Antarctic Station (CFAS). The levels of metals and arsenic were determined in soils collected near CFAS (points 5, 6, 7, and 9), Base G and at two points distant from the CFAS: Refuge II and Hennequin. Samples were collected after the fire in CFAS occurred in February 2012, up to December 2018 to assess the environmental impacts in the area. Al and As were related with Base G. Refuge II and Hennequin can be considered as control points for this region. As a consequence of the accident, the increased levels for Cd, Cu, Pb, and Zn, especially at point 9 (inside the CFAS) and in the soil surrounding the CFAS in 2013. The results from 2016 to 2018 demonstrated a reduction in levels of all studied metals near CFAS, which may be related to the leaching of metals into Admiralty Bay; it is thus, being important the continue monitoring soil, sediments, and Antarctic biota.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
V. Dhananjayan ◽  
S. Muralidharan ◽  
Vinny R. Peter

This study investigated the occurrence of polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples collected along the harbour line, Mumbai, India. The ∑PAHs quantified in water and sediment samples were ranged from 8.66 ng/L to 46.74 ng/L and from 2608 ng/g to 134134 ng/g dry wt., respectively. Significantly high concentration of ∑PAHs was found in water samples of Sewri and sediment samples of Mahul (P<0.05). PAH concentrations detected in the present study were several folds higher than the existing sediment quality criteria suggested by various statutory agencies. The PAH composition patterns in water and sediments suggest the dominance of high molecular weight compounds and indicate important pyrolytic and petrogenic sources. The occurrence of PAHs in the marine environment has attracted the attention of the scientific community as these compounds are frequently detected in seawater and sediments at increasing levels and can have adverse health effects on marine organisms and humans. PAH concentrations detected at Sewri-Mahul site were sufficiently high to pose a risk to marine organisms if they are exposed continuously to this concentration. Hence, continuous monitoring of the ecosystem is highly warranted.


2021 ◽  
Author(s):  
Nana Luo ◽  
Kunshan Bao ◽  
Rui Yu ◽  
Xingtu Liu ◽  
Yelebolat Tuoliuhan ◽  
...  

&lt;p&gt;Black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) are potentially proxies of changes in natural and human activities during the past century. It is important to identify historical BC sources and differentiate human activities contribution to BC in the environment. In this study, a 30 cm peat profile from the Jiadengyu (JDY) peatland in Altay Mountain was dated by the &lt;sup&gt;137&lt;/sup&gt;Cs and &lt;sup&gt;210&lt;/sup&gt;Pb methods. BC, total PAHs content and &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C&lt;sub&gt;BC&lt;/sub&gt; in JDY peat were tested. The results showed that the TOC, BC and PAHS contents in JDY peat core were 17.09 ~ 47.16%, 1.14 ~ 67.138 mg/g and 260.58 ~ 950.98 ng/g, respectively. The value of &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C&lt;sub&gt;BC&lt;/sub&gt; ranged -31.5&amp;#8240; ~ -27.43&amp;#8240;, with an average of -30.52&amp;#8240;. The range of total PAHs concentrations in JDY peat core were between 260.59 ng/g and 950.98 ng/g. The BC was significantly correlated with PAHs and regional population.&amp;#160;The BC fluxes have slightly increased since 1900s with the increasing population and cultivate area, and more significantly in 1980s.&lt;strong&gt; &lt;/strong&gt;The burning of biomass and yak dung, fossil fuels, and human activities (mining, coking coal) may have important effects on the BC emission of soil in the Altay region. The change of BC and &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C&lt;sub&gt;BC&lt;/sub&gt; reflected the change of local energy structure. With the regional reclamation increasing and environment- friendly industry developing, the BC source of JDY peatland is mainly the result of the interaction between biomass combustion and fossil fuel combustion.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document