scholarly journals Nearshore mixing and nutrient delivery along the western Antarctic Peninsula

2017 ◽  
Vol 29 (5) ◽  
pp. 397-409 ◽  
Author(s):  
D. Reide Corbett ◽  
Jared Crenshaw ◽  
Kimberly Null ◽  
Richard N. Peterson ◽  
Leigha E. Peterson ◽  
...  

AbstractThe surface waters of the Southern Ocean play a key role in the global climate and carbon cycles by promoting growth of some of the world’s largest phytoplankton blooms. Several studies have emphasized the importance of glacial and sediment inputs of Fe that fuel the primary production of the Fe-limited Southern Ocean. Although the fertile surface waters along the shelf of the western Antarctic Peninsula (WAP) are influenced by large inputs of freshwater, this freshwater may take multiple pathways (e.g. calving, streams, groundwater discharge) with different degrees of water-rock interactions leading to variable Fe flux to coastal waters. During the summers of 2012–13 and 2013–14, seawater samples were collected along the WAP, near Anvers Island, to observe water column dynamics in nearshore and offshore waters. Tracers (223,224Ra, 222Rn, 18O, 2H) were used to evaluate the source and transport of water and nutrients in coastal fjords and across the shelf. Coastal waters are compared across two field seasons, with increased freshwater observed during 2014. Horizontal mixing rates of water masses along the WAP ranged from 110–3600 m2 s-1. These mixing rates suggest a rapid transport mechanism for moving meltwater offshore.

2012 ◽  
Vol 25 (3) ◽  
pp. 445-456 ◽  
Author(s):  
Amber L. Annett ◽  
Sian F. Henley ◽  
Pieter Van Beek ◽  
Marc Souhaut ◽  
Raja Ganeshram ◽  
...  

AbstractIn the western Antarctic Peninsula region, micronutrient injection facilitates strong plankton blooms that support productive food webs, unlike large areas of the low-productivity Southern Ocean. We use naturally occurring radioisotopes of radium to constrain rates of chemical fluxes into Ryder Bay (a small coastal embayment in northern Marguerite Bay), and hence to evaluate possible sources of sediment-derived micronutrients and estimate sediment-ocean mixing rates. We present the first coupled, short-lived radium isotope (223Ra and 224Ra) measurements from Antarctic waters, both present at very low activities (mean 0.155 and 3.21 dpm m-3, respectively), indicating much lower radium inputs than in other coastal environments. Longer-lived 228Ra activity was also lower than existing nearshore values, but higher than open ocean waters, indicating some degree of coastal radium input on timescales exceeding the week-to-month range reflected by 223Ra and 224Ra. Using a simple diffusion model along a shore to mid-bay transect, effective horizontal eddy diffusivity estimates ranged from 0.22–0.83 m2 s-1 from 223Ra and 224Ra, respectively, much lower than already-low mixing estimates for the Southern Ocean. Significant radium enrichment and much faster mixing (18 m2 s-1) was found near a marine-terminating glacier and consequently any sediment-derived micronutrient inputs in this location are more probably dominated by glacial processes than groundwater, land runoff, or marine sediment sources.


Polar Record ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 58-71 ◽  
Author(s):  
P.M. Suprenand ◽  
D.L. Jones ◽  
J.J. Torres

ABSTRACTDistributions of gymnosomatous pteropods,Spongiobranchaea australisandClione antarctica, were determined at six sites along a latitudinal gradient in western Antarctica Peninsula shelf waters using vertically stratified trawls. Hydrographic data were collected at the same sites with conductivity-temperature-depth casts, and correlations of explanatory variables to gymnosome distributions were determined using statistical analyses performed in Matlab, a high level programming software to conduct numerical computation and visualisation. Explanatory variables included sampling site, latitude, longitude and depth, seawater temperature, salinity and density, Southern Ocean Antarctic Surface Water, Winter Water, Upper Circumpolar Deep Water and warm transitional waters, as well as oceanographic remote sensing data for coloured dissolved organic matter, chlorophyllaconcentration, normalised fluorescence line height, nighttime sea surface temperature, photosynthetically active radiation, particulate inorganic carbon, particulate organic carbon, daytime sea surface temperature and daily sea ice concentration. Hydrographic data revealed that warmer water masses were prevalent along the western Antarctic Peninsula, and the distributions of both gymnosome species were primarily influenced by water masses, temperature, sampling site and latitude. As a consequence, distributional shifts of gymnosomes are predicted in response to the current warming trends.


2014 ◽  
Vol 11 (9) ◽  
pp. 13389-13432 ◽  
Author(s):  
P. van der Merwe ◽  
A. R. Bowie ◽  
F. Quéroué ◽  
L. Armand ◽  
S. Blain ◽  
...  

Abstract. The KEOPS2 project aims to elucidate the role of natural Fe fertilisation on biogeochemical cycles and ecosystem functioning, including quantifying the sources and processes by which iron is delivered in the vicinity of the Kerguelen Archipelago, Southern Ocean. The KEOPS2 process study used an upstream HNLC, deep water (2500 m), reference station to compare with a shallow (500 m), strongly fertilised plateau station and continued the observations to a downstream, bathymetrically trapped recirculation of the Polar Front where eddies commonly form and persist for hundreds of kilometres into the Southern Ocean. Over the Kerguelen Plateau, mean particulate (1–53 μm) Fe and Al concentrations (pFe = 13.4 nM, pAl = 25.2 nM) were more than 20-fold higher than at an offshore (lower-productivity) reference station (pFe = 0.53 nM, pAl = 0.83 nM). In comparison, over the plateau dissolved Fe levels were only elevated by a factor of ∼2. Over the Kerguelen Plateau, ratios of pMn/pAl and pFe/pAl resemble basalt, likely originating from glacial/fluvial inputs into shallow coastal waters. In downstream, offshore deep-waters, higher pFe/pAl, and pMn/pAl ratios were observed, suggesting loss of lithogenic material accompanied by retention of pFe and pMn. Biological uptake of dissolved Fe and Mn and conversion into the biogenic particulate fraction or aggregation of particulate metals onto bioaggregates also increased these ratios further in surface waters as the bloom developed within the recirculation structure. While resuspension of shelf sediments is likely to be one of the important mechanisms of Fe fertilisation over the plateau, fluvial and glacial sources appear to be important to areas downstream of the island. Vertical profiles within an offshore recirculation feature associated with the Polar Front show pFe and pMn levels that were 6-fold and 3.5-fold lower respectively than over the plateau in surface waters, though still 3.6-fold and 1.7-fold higher respectively than the reference station. Within the recirculation feature, strong depletions of pFe and pMn were observed in the remnant winter water (temperature-minimum) layer near 175 m, with higher values above and below this depth. The correspondence between the pFe minima and the winter water temperature minima implies a seasonal cycle is involved in the supply of pFe into the fertilized region. This observed association is indicative of reduced supply in winter, which is counterintuitive if sediment resuspension and entrainment within the mixed layer is the primary fertilising mechanism to the downstream recirculation structure. Therefore, we hypothesise that lateral transport of pFe from shallow coastal waters is strong in spring, associated with snow melt and increased runoff due to rainfall, drawdown through summer and reduced supply in winter when snowfall and freezing conditions predominate in the Kerguelen region.


Polar Biology ◽  
2019 ◽  
Vol 42 (8) ◽  
pp. 1477-1488 ◽  
Author(s):  
Holly Fearnbach ◽  
John W. Durban ◽  
David K. Ellifrit ◽  
Robert L. Pitman

Sign in / Sign up

Export Citation Format

Share Document