scholarly journals Cahn–Hilliard equations on an evolving surface

Author(s):  
D. CAETANO ◽  
C. M. ELLIOTT

We describe a functional framework suitable to the analysis of the Cahn–Hilliard equation on an evolving surface whose evolution is assumed to be given a priori. The model is derived from balance laws for an order parameter with an associated Cahn–Hilliard energy functional and we establish well-posedness for general regular potentials, satisfying some prescribed growth conditions, and for two singular non-linearities – the thermodynamically relevant logarithmic potential and a double-obstacle potential. We identify, for the singular potentials, necessary conditions on the initial data and the evolution of the surfaces for global-in-time existence of solutions, which arise from the fact that integrals of solutions are preserved over time, and prove well-posedness for initial data on a suitable set of admissible initial conditions. We then briefly describe an alternative derivation leading to a model that instead preserves a weighted integral of the solution and explain how our arguments can be adapted in order to obtain global-in-time existence without restrictions on the initial conditions. Some illustrative examples and further research directions are given in the final sections.

2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Sen Ming ◽  
Han Yang ◽  
Ls Yong

The dissipative periodic 2-component Degasperis-Procesi system is investigated. A local well-posedness for the system in Besov space is established by using the Littlewood-Paley theory and a priori estimates for the solutions of transport equation. The wave-breaking criterions for strong solutions to the system with certain initial data are derived.


2002 ◽  
Vol 66 (3) ◽  
pp. 443-463 ◽  
Author(s):  
Alexandre N. Carvalho ◽  
Jan W. Cholewa

In this article the strongly damped wave equation is considered and a local well posedness result is obtained in the product space . The space of initial conditions is chosen according to the energy functional, whereas the approach used in this article is based on the theory of analytic semigroups as well as interpolation and extrapolation spaces. This functional analytic framework allows local existence results to be proved in the case of critically growing nonlinearities, which improves the existing results.


2021 ◽  
Vol 26 (4) ◽  
pp. 565-580
Author(s):  
Ning Duan ◽  
Fengnan Liu ◽  
Xiaopeng Zhao

In this paper, we consider the global well-posedness of solutions for the initial-boundary value problems of the epitaxy growth model. We first construct the local smooth solution, then by combining some a priori estimates, continuity argument, the local smooth solutions are extended step by step to all t > 0, provided that the initial datums sufficiently small and the smooth nonlinear functions satisfy certain local growth conditions.


Author(s):  
Raphaël Danchin ◽  
Piotr Bogusław Mucha ◽  
Patrick Tolksdorf

AbstractWe are concerned with global-in-time existence and uniqueness results for models of pressureless gases that come up in the description of phenomena in astrophysics or collective behavior. The initial data are rough: in particular, the density is only bounded. Our results are based on interpolation and parabolic maximal regularity, where Lorentz spaces play a key role. We establish a novel maximal regularity estimate for parabolic systems in $$L_{q,r}(0,T;L_p(\Omega ))$$ L q , r ( 0 , T ; L p ( Ω ) ) spaces.


1998 ◽  
Vol 21 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Fengxin Chen ◽  
Ping Wang ◽  
Chaoshun Qu

In this paper we study the system governing flows in the magnetic field within the earth. The system is similar to the magnetohydrodynamic (MHD) equations. For initial data in spaceLp, we obtained the local in time existence and uniqueness ofweak solutions of the system subject to appropriate initial and boundary conditions.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 85
Author(s):  
Andreas Rauh ◽  
Julia Kersten

Continuous-time linear systems with uncertain parameters are widely used for modeling real-life processes. The uncertain parameters, contained in the system and input matrices, can be constant or time-varying. In the latter case, they may represent state dependencies of these matrices. Assuming bounded uncertainties, interval methods become applicable for a verified reachability analysis, for feasibility analysis of feedback controllers, or for the design of robust set-valued state estimators. The evaluation of these system models becomes computationally efficient after a transformation into a cooperative state-space representation, where the dynamics satisfy certain monotonicity properties with respect to the initial conditions. To obtain such representations, similarity transformations are required which are not trivial to find for sufficiently wide a-priori bounds of the uncertain parameters. This paper deals with the derivation and algorithmic comparison of two different transformation techniques for which their applicability to processes with constant and time-varying parameters has to be distinguished. An interval-based reachability analysis of the states of a simple electric step-down converter concludes this paper.


2017 ◽  
Vol 14 (01) ◽  
pp. 157-192 ◽  
Author(s):  
Yung-Fu Fang ◽  
Hsi-Wei Shih ◽  
Kuan-Hsiang Wang

We consider the quantum Zakharov system in one spatial dimension and establish a local well-posedness theory when the initial data of the electric field and the deviation of the ion density lie in a Sobolev space with suitable regularity. As the quantum parameter approaches zero, we formally recover a classical result by Ginibre, Tsutsumi, and Velo. We also improve their result concerning the Zakharov system and a result by Jiang, Lin, and Shao concerning the quantum Zakharov system.


Author(s):  
Boling Guo ◽  
fengxia liu

We study the low-regularity properties of the Kawahara equation on the half line. We obtain the local existence, uniqueness, and continuity of the solution. Moreover, We obtain that the nonlinear terms of the solution are smoother than the initial data.


Sign in / Sign up

Export Citation Format

Share Document