Invariant solutions of two models of evolution of turbulent bursts

1999 ◽  
Vol 10 (3) ◽  
pp. 237-249 ◽  
Author(s):  
VICTOR A. GALAKTIONOV

We consider two problems related to the b–l and b–ε models of propagation of turbulent bursts. We show that these equations admit some particular exact solutions which reduce to a finite-dimensional dynamical system. This makes it possible to describe a singular effect of finite-time extinction, and in particular, nonsymmetric solutions which do not exhibit symmetrization in the asymptotic behaviour. We show that in the multi-dimensional equation related to the b–l model, the nonsymmetric extinction behaviour is governed by the first-order equation. For the b–ε model with α=β=1 and γ<1, using such particular solutions, we establish that the ω-limit set of all the rescaled extinction orbits is essentially infinite-dimensional.

2020 ◽  
Vol 31 (12) ◽  
pp. 2050172
Author(s):  
Henryk Fukś ◽  
Yucen Jin

The local structure theory for cellular automata (CA) can be viewed as an finite-dimensional approximation of infinitely dimensional system. While it is well known that this approximation works surprisingly well for some CA, it is still not clear why it is the case, and which CA rules have this property. In order to shed some light on this problem, we present an example of a four input CA for which probabilities of occurrence of short blocks of symbols can be computed exactly. This rule is number conserving and possesses a blocking word. Its local structure approximation correctly predicts steady-state probabilities of small length blocks, and we present a rigorous proof of this fact, without resorting to numerical simulations. We conjecture that the number-conserving property together with the existence of the blocking word are responsible for the observed perfect agreement between the finite-dimensional approximation and the actual infinite-dimensional dynamical system.


1984 ◽  
Vol 49 (4) ◽  
pp. 1137-1145 ◽  
Author(s):  
C. J. Ash ◽  
R. G. Downey

AbstractA subspace V of an infinite dimensional fully effective vector space V∞ is called decidable if V is r.e. and there exists an r.e. W such that V ⊕ W = V∞. These subspaces of V∞ are natural analogues of recursive subsets of ω. The set of r.e. subspaces forms a lattice L(V∞) and the set of decidable subspaces forms a lower semilattice S(V∞). We analyse S(V∞) and its relationship with L(V∞). We show:Proposition. Let U, V, W ∈ L(V∞) where U is infinite dimensional andU ⊕ V = W. Then there exists a decidable subspace D such that U ⊕ D = W.Corollary. Any r.e. subspace can be expressed as the direct sum of two decidable subspaces.These results allow us to show:Proposition. The first order theory of the lower semilattice of decidable subspaces, Th(S(V∞), is undecidable.This contrasts sharply with the result for recursive sets.Finally we examine various generalizations of our results. In particular we analyse S*(V∞), that is, S(V∞) modulo finite dimensional subspaces. We show S*(V∞) is not a lattice.


2002 ◽  
Vol 67 (2) ◽  
pp. 859-878 ◽  
Author(s):  
L. R. Galminas ◽  
John W. Rosenthal

AbstractWe show that the first order theory of the lattice <ω(S) of finite dimensional closed subsets of any nontrivial infinite dimensional Steinitz Exhange System S has logical complexity at least that of first order number theory and that the first order theory of the lattice (S∞) of computably enumerable closed subsets of any nontrivial infinite dimensional computable Steinitz Exchange System S∞ has logical complexity exactly that of first order number theory. Thus, for example, the lattice of finite dimensional subspaces of a standard copy of ⊕ωQ interprets first order arithmetic and is therefore as complicated as possible. In particular, our results show that the first order theories of the lattice (V∞) of c.e. subspaces of a fully effective ℵ0-dimensional vector space V∞ and the lattice of c.e. algebraically closed subfields of a fully effective algebraically closed field F∞ of countably infinite transcendence degree each have logical complexity that of first order number theory.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 184-204
Author(s):  
Carlos Barrera-Causil ◽  
Juan Carlos Correa ◽  
Andrew Zamecnik ◽  
Francisco Torres-Avilés ◽  
Fernando Marmolejo-Ramos

Expert knowledge elicitation (EKE) aims at obtaining individual representations of experts’ beliefs and render them in the form of probability distributions or functions. In many cases the elicited distributions differ and the challenge in Bayesian inference is then to find ways to reconcile discrepant elicited prior distributions. This paper proposes the parallel analysis of clusters of prior distributions through a hierarchical method for clustering distributions and that can be readily extended to functional data. The proposed method consists of (i) transforming the infinite-dimensional problem into a finite-dimensional one, (ii) using the Hellinger distance to compute the distances between curves and thus (iii) obtaining a hierarchical clustering structure. In a simulation study the proposed method was compared to k-means and agglomerative nesting algorithms and the results showed that the proposed method outperformed those algorithms. Finally, the proposed method is illustrated through an EKE experiment and other functional data sets.


1990 ◽  
Vol 45 (11-12) ◽  
pp. 1219-1229 ◽  
Author(s):  
D.-A. Becker ◽  
E. W. Richter

AbstractA generalization of the usual method of similarity analysis of differential equations, the method of partially invariant solutions, was introduced by Ovsiannikov. The degree of non-invariance of these solutions is characterized by the defect of invariance d. We develop an algorithm leading to partially invariant solutions of quasilinear systems of first-order partial differential equations. We apply the algorithm to the non-linear equations of the two-dimensional non-stationary ideal MHD with a magnetic field perpendicular to the plane of motion.


1985 ◽  
Vol 31 (3) ◽  
pp. 445-450 ◽  
Author(s):  
Charles Swartz

Shimizu, Aiyoshi and Katayama have recently given a finite dimensional generalization of the classical Farkas Lemma. In this note we show that a result of Pshenichnyi on convex programming can be used to give a generalization of the result of Shimizu, Aiyoshi and Katayama to infinite dimensional spaces. A generalized Farkas Lemma of Glover is also obtained.


Author(s):  
Yuan-Wei Qi

SynopsisThe Cauchy problem of ut, = ∆uα + uβ, where 0 < α < l and α>1, is studied. It is proved that if 1< β<α + 2/n then every nontrivial non-negative solution is not global in time. But if β>α+ 2/n there exist both blow-up solutions and global positive solutions which decay to zero as t–1/(β–1) when t →∞. Thus the famous Fujita result on ut = ∆u + up is generalised to the present fast diffusion equation. Furthermore, regarding the equation as an infinite dimensional dynamical system on Sobolev space W1,s (W2.s) with S > 1, a non-uniqueness result is established which shows that there exists a positive solution u(x, t) with u(., t) → 0 in W1.s (W2.s) as t → 0.


2005 ◽  
Vol 02 (03) ◽  
pp. 251-258
Author(s):  
HANLIN HE ◽  
QIAN WANG ◽  
XIAOXIN LIAO

The dual formulation of the maximal-minimal problem for an objective function of the error response to a fixed input in the continuous-time systems is given by a result of Fenchel dual. This formulation probably changes the original problem in the infinite dimensional space into the maximal problem with some restrained conditions in the finite dimensional space, which can be researched by finite dimensional space theory. When the objective function is given by the norm of the error response, the maximum of the error response or minimum of the error response, the dual formulation for the problems of L1-optimal control, the minimum of maximal error response, and the minimal overshoot etc. can be obtained, which gives a method for studying these problems.


Sign in / Sign up

Export Citation Format

Share Document