scholarly journals Effects of power lines on flight behaviour of the West-Pannonian Great Bustard Otis tarda population

2010 ◽  
Vol 21 (2) ◽  
pp. 142-155 ◽  
Author(s):  
RAINER RAAB ◽  
PÉTER SPAKOVSZKY ◽  
EIKE JULIUS ◽  
CLAUDIA SCHÜTZ ◽  
CHRISTIAN H. SCHULZE

SummaryFlight directions of Great Bustards Otis tarda after take-off were used to analyse effects of power lines on spatial movements of this highly endangered bird species. Data on flight directions came from Great Bustard observations conducted in eastern Austria (northern and eastern parts of Lower Austria, northern part of Burgenland), western Slovakia and western Hungary. Flight directions were determined by a constructed line connecting take-off site and the bird’s position after a flown distance of 100 m. Up to a distance of 800 m from the nearest power line, mean flight direction of Great Bustards after take-off deviated significantly from a random distribution. The mean flight direction angles clearly indicate that take-off flight routes point away from power lines at an angle of approximately 180°. Furthermore, flight directions of bustards still deviated from a random distribution in two 200-m distance bands much further away from power lines (> 1,200–1,400 m, > 1,400–1,600 m), possibly suggesting that even at larger distances from power lines flight directions might still be affected by such artificial linear landscape structures. With increasing distance to nearest power lines, mean vector length r values of flight paths decrease significantly, while circular standard deviations S values increase significantly. Very similar results were achieved independently if all data were pooled or analysed separately for individual study areas for which the number of flight observations was large enough to conduct reliable analyses. Our study reports a strong effect of power lines on the flight behaviour of Great Bustards, at least up to a distance of 800 m, perhaps even up to 1,600 m. Although this may significantly reduce the risk of collision with power lines it most likely has severe consequences for the spatial movements of birds within the entire landscape and between potentially suitable breeding and foraging habitats.

Oryx ◽  
2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ana Teresa Marques ◽  
Ricardo C. Martins ◽  
João Paulo Silva ◽  
Jorge M. Palmeirim ◽  
Francisco Moreira

Abstract Collision with power lines is a major cause of mortality for many bird species. Understanding the biotic and abiotic factors that increase collision risk is therefore important for implementing mitigation measures to minimize mortality, such as power line rerouting or wire marking. Here, we used collision events registered during 2003–2015 along 280 km of transmission power lines in southern Portugal to analyse spatio-temporal patterns and collision risk factors in two sympatric, threatened, and collision-prone species: the great bustard Otis tarda and the little bustard Tetrax tetrax. The occurrence of collisions was not uniform across space and time, and variations could be explained by the species' ecological requirements, distribution patterns and behaviour. Although both species fly considerable distances between areas of suitable habitat, collisions were far more likely in power line sections with > 20% (for the little bustard) or > 50% (for the great bustard) of open farmland habitat in the surroundings. Power line configuration was also important: taller pylons and those with a higher number of wire levels posed a higher risk for both species. Wire marking had a small but significant effect for the little bustard, reducing collisions risk. There was, however, no similar effect for the great bustard, possibly a result of limited data. Mitigation measures should be implemented to prevent bustard collisions, including adequate route planning, ideally avoiding areas with > 20% of open habitat. Line configuration and wire marking are particularly important where such localities cannot be avoided and power lines cross areas with a high proportion of bustard habitat, including outside protected areas.


2011 ◽  
Vol 22 (3) ◽  
pp. 299-306 ◽  
Author(s):  
RAINER RAAB ◽  
CLAUDIA SCHÜTZ ◽  
PÉTER SPAKOVSZKY ◽  
EIKE JULIUS ◽  
CHRISTIAN H. SCHULZE

SummaryCollisions with power lines represent an important mortality factor for Great Bustards Otis tarda throughout the distribution range of the species. This study evaluates the success of two conservation measures implemented in the West-Pannonian distribution range to reduce the number of power line collision casualties: (1) extensive underground cabling of 43.1 km power lines, and (2) marking of 89.7 km power lines starting in 2005 and 2006, respectively. The mortality rate of Great Bustards in our study area (covering 686.5 km2) decreased significantly between 2002 and 2011, predominantly caused by reduced mortality due to power line collisions. Univariate tests indicate that underground cabling and power line marking significantly decreased power line collision casualties. Generalised linear models (GLMs) highlighted the prominent effect of underground cabling. Our results indicate that five years after underground cabling and marking of power lines within core areas of the West-Pannonian distribution range of the Great Bustard, the population already benefited through a significantly decreased mortality rate. Both conservation measures most likely contributed strongly to the rapid recovery of the West-Pannonian Great Bustard population observed within the last decade.


Oryx ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Kate Ashbrook ◽  
Andrew Taylor ◽  
Louise Jane ◽  
Ian Carter ◽  
Tamás Székely

AbstractReintroductions aim to re-establish species within their historical ranges through the release of wild- or captive-bred individuals following extirpation (or extinction) in the wild. There is no general agreement on what constitutes a successful reintroduction but the probability of the population achieving long-term persistence should be addressed. Here we review a 10-year trial reintroduction of the great bustard Otis tarda, a globally threatened bird species, to the UK and assess the long-term population viability. Despite changes in rearing and release strategy, initial post-release survival probability remained consistently low, with only 11.3% of bustards (n = 167) surviving from release to 1 year post-release. Nineteen breeding attempts were made by eight females; however, only one chick survived > 100 days after hatching, and no wild juveniles have recruited into the population. Using demographic rates from the UK population and wild populations elsewhere, and stochastic population modelling, we investigate the viability of this reintroduced population by predicting population size over the next 10 years. Under current demographic rates the population was predicted to decline rapidly. Self-sufficiency was predicted only using the highest estimates from the UK population for first-year and adult survival, and recruitment rates from wild populations elsewhere. Although changes have been made in rearing, release strategies, habitat management and release sites used, these changes appear to have a modest effect on long-term viability. Substantial improvements in survival rates and productivity are necessary to establish a viable great bustard population in the UK, and we consider this unlikely.


Ardeola ◽  
2017 ◽  
Vol 64 (2) ◽  
pp. 289 ◽  
Author(s):  
Luis M. Bautista ◽  
Carolina Bravo ◽  
Carlos Ponce ◽  
Dácil Unzué-Belmonte ◽  
Juan Carlos Alonso

2020 ◽  
Author(s):  
Nigel Collar ◽  
Ernest Garcia
Keyword(s):  

2002 ◽  
pp. 337-378 ◽  
Author(s):  
Jozef Telega ◽  
Wlodzimierz Bielski

The aim of this contribution is mainly twofold. First, the stochastic two-scale convergence in the mean developed by Bourgeat et al. [13] is used to derive the macroscopic models of: (i) diffusion in random porous medium, (ii) nonstationary flow of Stokesian fluid through random linear elastic porous medium. Second, the multi-scale convergence method developed by Allaire and Briane [7] for the case of several microperiodic scales is extended to random distribution of heterogeneities characterized by separated scales (stochastic reiterated homogenization). .


Sign in / Sign up

Export Citation Format

Share Document