On categorical models of classical logic and the Geometry of Interaction

2007 ◽  
Vol 17 (5) ◽  
pp. 957-1027 ◽  
Author(s):  
CARSTEN FÜHRMANN ◽  
DAVID PYM

It is well known that weakening and contraction cause naive categorical models of the classical sequent calculus to collapse to Boolean lattices. In previous work, summarised briefly herein, we have provided a class of models calledclassical categoriesthat is sound and complete and avoids this collapse by interpreting cut reduction by a poset enrichment. Examples of classical categories include boolean lattices and the category of sets and relations, where both conjunction and disjunction are modelled by the set-theoretic product. In this article, which is self-contained, we present an improved axiomatisation of classical categories, together with a deep exploration of their structural theory. Observing that the collapse already happens in the absence of negation, we start with negation-free models calledDummett categories. Examples of these include, besides the classical categories mentioned above, the category of sets and relations, where both conjunction and disjunction are modelled by the disjoint union. We prove that Dummett categories are MIX, and that the partial order can be derived from hom-semilattices, which have a straightforward proof-theoretic definition. Moreover, we show that the Geometry-of-Interaction construction can be extended from multiplicative linear logic to classical logic by applying it to obtain a classical category from a Dummett category.Along the way, we gain detailed insights into the changes that proofs undergo during cut elimination in the presence of weakening and contraction.

2018 ◽  
Vol 29 (8) ◽  
pp. 1177-1216
Author(s):  
CHUCK LIANG

This article presents a unified logic that combines classical logic, intuitionistic logic and affine linear logic (restricting contraction but not weakening). We show that this unification can be achieved semantically, syntactically and in the computational interpretation of proofs. It extends our previous work in combining classical and intuitionistic logics. Compared to linear logic, classical fragments of proofs are better isolated from non-classical fragments. We define a phase semantics for this logic that naturally extends the Kripke semantics of intuitionistic logic. We present a sequent calculus with novel structural rules, which entail a more elaborate procedure for cut elimination. Computationally, this system allows affine-linear interpretations of proofs to be combined with classical interpretations, such as the λμ calculus. We show how cut elimination must respect the boundaries between classical and non-classical modes of proof that correspond to delimited control effects.


2005 ◽  
Vol 70 (4) ◽  
pp. 1108-1126 ◽  
Author(s):  
Greg Restall ◽  
Francesco Paoli

AbstractIn this paper we introduce a new natural deduction system for the logic of lattices, and a number of extensions of lattice logic with different negation connectives. We provide the class of natural deduction proofs with both a standard inductive definition and a global graph-theoretical criterion for correctness, and we show how normalisation in this system corresponds to cut elimination in the sequent calculus for lattice logic. This natural deduction system is inspired both by Shoesmith and Smiley's multiple conclusion systems for classical logic and Girard's proofnets for linear logic.


10.29007/p1fd ◽  
2018 ◽  
Author(s):  
Ozan Kahramanogullari

The deep inference presentation of multiplicative exponential linear logic (MELL) benefits from a rich combinatoric analysis with many more proofs in comparison to its sequent calculus presentation. In the deep inference setting, all the sequent calculus proofs are preserved. Moreover, many other proofs become available, and some of these proofs are much shorter. However, proof search in deep inference is subject to a greater nondeterminism, and this nondeterminism constitutes a bottleneck for applications. To this end, we address the problem of reducing nondeterminism in MELL by refining and extending our technique that has been previously applied to multiplicative linear logic and classical logic. We show that, besides the nondeterminism in commutative contexts, the nondeterminism in exponential contexts can be reduced in a proof theoretically clean manner. The method conserves the exponential speed-up in proof construction due to deep inference, exemplified by Statman tautologies. We validate the improvement in accessing the shorter proofs by experiments with our implementations.


2017 ◽  
Vol 28 (10) ◽  
pp. 1639-1694
Author(s):  
MASAHIRO HAMANO ◽  
PHILIP SCOTT

We present Geometry of Interaction (GoI) models for Multiplicative Polarized Linear Logic, MLLP, which is the multiplicative fragment of Olivier Laurent's Polarized Linear Logic. This is done by uniformly adding multi-points to various categorical models of GoI. Multi-points are shown to play an essential role in semantically characterizing the dynamics of proof networks in polarized proof theory. For example, they permit us to characterize the key feature of polarization, focusing, as well as being fundamental to our construction of concrete polarized GoI models.Our approach to polarized GoI involves following two independent studies, based on different categorical perspectives of GoI: (i)Inspired by the work of Abramsky, Haghverdi and Scott, a polarized GoI situation is defined in which multi-points are added to a traced monoidal category equipped with a reflexive object U. Using this framework, categorical versions of Girard's execution formula are defined, as well as the GoI interpretation of MLLP proofs. Running the execution formula is shown to characterize the focusing property (and thus polarities) as well as the dynamics of cut elimination.(ii)The Int construction of Joyal–Street–Verity is another fundamental categorical structure for modelling GoI. Here, we investigate it in a multi-pointed setting. Our presentation yields a compact version of Hamano–Scott's polarized categories, and thus denotational models of MLLP. These arise from a contravariant duality between monoidal categories of positive and negative objects, along with an appropriate bimodule structure (representing ‘non-focused proofs’) between them.Finally, as a special case of (ii) above, a compact model of MLLP is also presented based on Rel (the category of sets and relations) equipped with multi-points.


Author(s):  
Nils Kürbis

AbstractThis paper presents rules in sequent calculus for a binary quantifier I to formalise definite descriptions: Ix[F, G] means ‘The F is G’. The rules are suitable to be added to a system of positive free logic. The paper extends the proof of a cut elimination theorem for this system by Indrzejczak by proving the cases for the rules of I. There are also brief comparisons of the present approach to the more common one that formalises definite descriptions with a term forming operator. In the final section rules for I for negative free and classical logic are also mentioned.


2000 ◽  
Vol 65 (3) ◽  
pp. 979-1013 ◽  
Author(s):  
Giovanni Sambin ◽  
Giulia Battilotti ◽  
Claudia Faggian

AbstractWe introduce a sequent calculus B for a new logic, named basic logic. The aim of basic logic is to find a structure in the space of logics. Classical, intuitionistic. quantum and non-modal linear logics, are all obtained as extensions in a uniform way and in a single framework. We isolate three properties, which characterize B positively: reflection, symmetry and visibility.A logical constant obeys to the principle of reflection if it is characterized semantically by an equation binding it with a metalinguistic link between assertions, and if its syntactic inference rules are obtained by solving that equation. All connectives of basic logic satisfy reflection.To the control of weakening and contraction of linear logic, basic logic adds a strict control of contexts, by requiring that all active formulae in all rules are isolated, that is visible. From visibility, cut-elimination follows. The full, geometric symmetry of basic logic induces known symmetries of its extensions, and adds a symmetry among them, producing the structure of a cube.


2012 ◽  
Vol 92 (106) ◽  
pp. 79-95
Author(s):  
Silvia Likavec ◽  
Pierre Lescanne

The calculus of Curien and Herbelin was introduced to provide the Curry-Howard correspondence for classical logic. The terms of this calculus represent derivations in the sequent calculus proof system and reduction reflects the process of cut-elimination. We investigate some properties of two well-behaved subcalculi of untyped calculus of Curien and Herbelin, closed under the call-by-name and the call-by-value reduction, respectively. Continuation semantics is given using the category of negated domains and Moggi?s Kleisli category over predomains for the continuation monad. Soundness theorems are given for both versions thus relating operational and denotational semantics. A thorough overview of the work on continuation semantics is given.


2000 ◽  
Vol 10 (2) ◽  
pp. 277-312 ◽  
Author(s):  
PAUL RUET

Non-commutative logic, which is a unification of commutative linear logic and cyclic linear logic, is extended to all linear connectives: additives, exponentials and constants. We give two equivalent versions of the sequent calculus (directly with the structure of order varieties, and with their presentations as partial orders), phase semantics and a cut-elimination theorem. This involves, in particular, the study of the entropy relation between partial orders, and the introduction of a special class of order varieties: the series–parallel order varieties.


1997 ◽  
Vol 62 (3) ◽  
pp. 755-807 ◽  
Author(s):  
Vincent Danos ◽  
Jean-Baptiste Joinet ◽  
Harold Schellinx

AbstractThe main concern of this paper is the design of a noetherian and confluent normalization for LK2 (that is, classical second order predicate logic presented as a sequent calculus).The method we present is powerful: since it allows us to recover as fragments formalisms as seemingly different as Girard's LC and Parigot's λμ, FD ([10, 12, 32, 36]), delineates other viable systems as well, and gives means to extend the Krivine/Leivant paradigm of ‘programming-with-proofs’ ([26, 27]) to classical logic; it is painless: since we reduce strong normalization and confluence to the same properties for linear logic (for non-additive proof nets, to be precise) using appropriate embeddings (so-called decorations); it is unifying: it organizes known solutions in a simple pattern that makes apparent the how and why of their making.A comparison of our method to that of embedding LK into LJ (intuitionistic sequent calculus) brings to the fore the latter's defects for these ‘deconstructive purposes’.


1994 ◽  
Vol 59 (3) ◽  
pp. 888-899 ◽  
Author(s):  
Simone Martini ◽  
Andrea Masini

AbstractWe present a sequent calculus for the modal logic S4, and building on some relevant features of this system (the absence of contraction rules and the confinement of weakenings into axioms and modal rules) we show how S4 can easily be translated into full prepositional linear logic, extending the Grishin-Ono translation of classical logic into linear logic. The translation introduces linear modalities (exponentials) only in correspondence with S4 modalities. We discuss the complexity of the decision problem for several classes of linear formulas naturally arising from the proposed translations.


Sign in / Sign up

Export Citation Format

Share Document