A Tutte Polynomial for Maps

2018 ◽  
Vol 27 (6) ◽  
pp. 913-945 ◽  
Author(s):  
ANDREW GOODALL ◽  
THOMAS KRAJEWSKI ◽  
GUUS REGTS ◽  
LLUÍS VENA

We follow the example of Tutte in his construction of the dichromate of a graph (i.e. the Tutte polynomial) as a unification of the chromatic polynomial and the flow polynomial in order to construct a new polynomial invariant of maps (graphs embedded in orientable surfaces). We call this the surface Tutte polynomial. The surface Tutte polynomial of a map contains the Las Vergnas polynomial, the Bollobás–Riordan polynomial and the Krushkal polynomial as specializations. By construction, the surface Tutte polynomial includes among its evaluations the number of local tensions and local flows taking values in any given finite group. Other evaluations include the number of quasi-forests.

2001 ◽  
Vol 83 (3) ◽  
pp. 513-531 ◽  
Author(s):  
Béla Bollobás ◽  
Oliver Riordan

10.37236/6578 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Peter J. Cameron ◽  
Kerri Morgan

A chromatic root is a root of the chromatic polynomial of a graph.  Any chromatic root is an algebraic integer. Much is known about the location of chromatic roots in the real and complex numbers, but rather less about their properties as algebraic numbers. This question was the subject of a seminar at the Isaac Newton Institute in late 2008.  The purpose of this paper is to report on the seminar and subsequent developments.We conjecture that, for every algebraic integer $\alpha$, there is a natural number n such that $\alpha+n$ is a chromatic root. This is proved for quadratic integers; an extension to cubic integers has been found by Adam Bohn. The idea is to consider certain special classes of graphs for which the chromatic polynomial is a product of linear factors and one "interesting" factor of larger degree. We also report computational results on the Galois groups of irreducible factors of the chromatic polynomial for some special graphs. Finally, extensions to the Tutte polynomial are mentioned briefly.


2010 ◽  
Vol 20 (2) ◽  
pp. 267-287 ◽  
Author(s):  
VYACHESLAV KRUSHKAL

We introduce a polynomial invariant of graphs on surfaces,PG, generalizing the classical Tutte polynomial. Topological duality on surfaces gives rise to a natural duality result forPG, analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where the Tutte polynomial is known as the partition function of the Potts model. For ribbon graphs,PGspecializes to the well-known Bollobás–Riordan polynomial, and in fact the two polynomials carry equivalent information in this context. Duality is also established for a multivariate version of the polynomialPG. We then consider a 2-variable version of the Jones polynomial for links in thickened surfaces, taking into account homological information on the surface. An analogue of Thistlethwaite's theorem is established for these generalized Jones and Tutte polynomials for virtual links.


1993 ◽  
Vol 113 (2) ◽  
pp. 267-280 ◽  
Author(s):  
G. E. Farr

AbstractThe Whitney quasi-rank generating function, which generalizes the Whitney rank generating function (or Tutte polynomial) of a graph, is introduced. It is found to include as special cases the weight enumerator of a (not necessarily linear) code, the percolation probability of an arbitrary clutter and a natural generalization of the chromatic polynomial. The crucial construction, essentially equivalent to one of Kung, is a means of associating, to any function, a rank-like function with suitable properties. Some of these properties, including connections with the Hadamard transform, are discussed.


Author(s):  
C. MACLACHLAN ◽  
A. MILLER

For a fixed finite group G, the numbers Ng of equivalence classes of orientation-preserving actions of G on closed orientable surfaces Σg of genus g can be encoded by a generating function [sum ]Ngzg. When equivalence is determined by the isomorphism class of the quotient orbifold Σg/G, we show that the generating function is rational. When equivalence is topological conjugacy, we examine the cases where G is abelian and show that the generating function is again rational in the cases where G is cyclic.


10.37236/4162 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Vyacheslav Krushkal ◽  
David Renardy

The Tutte polynomial ${T}_G(X,Y)$ of a graph $G$ is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs $G$, $T_G(X,Y) = {T}_{G^*}(Y,X)$ where $G^*$ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial complexes. Polynomial duality for triangulations of a sphere follows as a consequence of Alexander duality. The main goal of this paper is to introduce and begin the study of a more general $4$-variable polynomial for triangulations and handle decompositions of orientable manifolds. Polynomial duality in this case is a consequence of Poincaré duality on manifolds. In dimension 2 these invariants specialize to the well-known polynomial invariants of ribbon graphs defined by B. Bollobás and O. Riordan. Examples and specific evaluations of the polynomials are discussed.


2005 ◽  
Vol 14 (07) ◽  
pp. 919-929 ◽  
Author(s):  
STEPHEN HUGGETT

Given matroids M and N there are two operations M ⊕2 N and M ⊗ N. When M and N are the cycle matroids of planar graphs these operations have interesting interpretations on the corresponding link diagrams. In fact, given a planar graph there are two well-established methods of generating an alternating link diagram, and in each case the Tutte polynomial of the graph is related to a polynomial invariant (Jones or Homfly) of the link. Switching from one of these methods to the other corresponds in knot theory to tangle insertion in the link diagrams, and in combinatorics to the tensor product of the cycle matroids of the graphs.


Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?


Sign in / Sign up

Export Citation Format

Share Document