scholarly journals On the union of intersecting families

2019 ◽  
Vol 28 (06) ◽  
pp. 826-839
Author(s):  
David Ellis ◽  
Noam Lifshitz

AbstractA family of sets is said to be intersecting if any two sets in the family have non-empty intersection. In 1973, Erdős raised the problem of determining the maximum possible size of a union of r different intersecting families of k-element subsets of an n-element set, for each triple of integers (n, k, r). We make progress on this problem, proving that for any fixed integer r ⩾ 2 and for any $$k \le ({1 \over 2} - o(1))n$$, if X is an n-element set, and $${\cal F} = {\cal F}_1 \cup {\cal F}_2 \cup \cdots \cup {\cal F}_r $$, where each $$ {\cal F}_i $$ is an intersecting family of k-element subsets of X, then $$|{\cal F}| \le \left( {\matrix{n \cr k \cr } } \right) - \left( {\matrix{{n - r} \cr k \cr } } \right)$$, with equality only if $${\cal F} = \{ S \subset X:|S| = k,\;S \cap R \ne \emptyset \} $$ for some R ⊂ X with |R| = r. This is best possible up to the size of the o(1) term, and improves a 1987 result of Frankl and Füredi, who obtained the same conclusion under the stronger hypothesis $$k < (3 - \sqrt 5 )n/2$$, in the case r = 2. Our proof utilizes an isoperimetric, influence-based method recently developed by Keller and the authors.

2012 ◽  
Vol 21 (1-2) ◽  
pp. 219-227 ◽  
Author(s):  
GYULA O. H. KATONA ◽  
GYULA Y. KATONA ◽  
ZSOLT KATONA

Let be a family of subsets of an n-element set. It is called intersecting if every pair of its members has a non-disjoint intersection. It is well known that an intersecting family satisfies the inequality || ≤ 2n−1. Suppose that ||=2n−1 + i. Choose the members of independently with probability p (delete them with probability 1 − p). The new family is intersecting with a certain probability. We try to maximize this probability by choosing appropriately. The exact maximum is determined in this paper for some small i. The analogous problem is considered for families consisting of k-element subsets, but the exact solution is obtained only when the size of the family exceeds the maximum size of the intersecting family only by one. A family is said to be inclusion-free if no member is a proper subset of another one. It is well known that the largest inclusion-free family is the one consisting of all $\lfloor \frac{n}{ 2}\rfloor$-element subsets. We determine the most probably inclusion-free family too, when the number of members is $\binom{n}{ \lfloor \frac{n}{ 2}\rfloor} +1$.


10.37236/602 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Vikram Kamat

We consider the following generalization of the seminal Erdős–Ko–Rado theorem, due to Frankl. For some $k\geq 2$, let $\mathcal{F}$ be a $k$-wise intersecting family of $r$-subsets of an $n$ element set $X$, i.e. for any $F_1,\ldots,F_k\in \mathcal{F}$, $\cap_{i=1}^k F_i\neq \emptyset$. If $r\leq \dfrac{(k-1)n}{k}$, then $|\mathcal{F}|\leq {n-1 \choose r-1}$. We prove a stability version of this theorem, analogous to similar results of Dinur-Friedgut, Keevash-Mubayi and others for the EKR theorem. The technique we use is a generalization of Katona's circle method, initially employed by Keevash, which uses expansion properties of a particular Cayley graph of the symmetric group.


10.37236/1985 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
John Talbot

A family of sets is $t$-intersecting if any two sets from the family contain at least $t$ common elements. Given a $t$-intersecting family of $r$-sets from an $n$-set, how many distinct sets of size $k$ can occur as pairwise intersections of its members? We prove an asymptotic upper bound on this number that can always be achieved. This result can be seen as a generalization of the Erdős-Ko-Rado theorem.


2012 ◽  
Vol 22 (1) ◽  
pp. 146-160 ◽  
Author(s):  
PAUL A. RUSSELL ◽  
MARK WALTERS

It is well known that an intersecting family of subsets of an n-element set can contain at most 2n−1 sets. It is natural to wonder how ‘close’ to intersecting a family of size greater than 2n−1 can be. Katona, Katona and Katona introduced the idea of a ‘most probably intersecting family’. Suppose that is a family and that 0 < p < 1. Let (p) be the (random) family formed by selecting each set in independently with probability p. A family is most probably intersecting if it maximizes the probability that (p) is intersecting over all families of size ||.Katona, Katona and Katona conjectured that there is a nested sequence consisting of most probably intersecting families of every possible size. We show that this conjecture is false for every value of p provided that n is sufficiently large.


2017 ◽  
Vol 27 (1) ◽  
pp. 60-68 ◽  
Author(s):  
PETER FRANKL ◽  
ANDREY KUPAVSKII

A family of subsets of {1,. . .,n} is called intersecting if any two of its sets intersect. A classical result in extremal combinatorics due to Erdős, Ko and Rado determines the maximum size of an intersecting family of k-subsets of {1,. . .,n}. In this paper we study the following problem: How many intersecting families of k-subsets of {1,. . .,n} are there? Improving a result of Balogh, Das, Delcourt, Liu and Sharifzadeh, we determine this quantity asymptotically for n ≥ 2k+2+2$\sqrt{k\log k}$ and k → ∞. Moreover, under the same assumptions we also determine asymptotically the number of non-trivial intersecting families, that is, intersecting families for which the intersection of all sets is empty. We obtain analogous results for pairs of cross-intersecting families.


10.37236/7846 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Niranjan Balachandran ◽  
Rogers Mathew ◽  
Tapas Kumar Mishra

Let $L = \{\frac{a_1}{b_1}, \ldots , \frac{a_s}{b_s}\}$, where for every $i \in [s]$, $\frac{a_i}{b_i} \in [0,1)$ is an irreducible fraction. Let $\mathcal{F} = \{A_1, \ldots , A_m\}$ be a family of subsets of $[n]$. We say $\mathcal{F}$ is a fractional $L$-intersecting family if for every distinct $i,j \in [m]$, there exists an $\frac{a}{b} \in L$ such that $|A_i \cap A_j| \in \{ \frac{a}{b}|A_i|, \frac{a}{b} |A_j|\}$. In this paper, we introduce and study the notion of fractional $L$-intersecting families.


2009 ◽  
Vol 18 (1-2) ◽  
pp. 107-122 ◽  
Author(s):  
IRIT DINUR ◽  
EHUD FRIEDGUT

A family$\J$of subsets of {1, . . .,n} is called aj-junta if there existsJ⊆ {1, . . .,n}, with |J| =j, such that the membership of a setSin$\J$depends only onS∩J.In this paper we provide a simple description of intersecting families of sets. Letnandkbe positive integers withk<n/2, and let$\A$be a family of pairwise intersecting subsets of {1, . . .,n}, all of sizek. We show that such a family is essentially contained in aj-junta$\J$, wherejdoes not depend onnbut only on the ratiok/nand on the interpretation of ‘essentially’.Whenk=o(n) we prove that every intersecting family ofk-sets is almost contained in a dictatorship, a 1-junta (which by the Erdős–Ko–Rado theorem is a maximal intersecting family): for any such intersecting family$\A$there exists an elementi∈ {1, . . .,n} such that the number of sets in$\A$that do not containiis of order$\C {n-2}{k-2}$(which is approximately$\frac {k}{n-k}$times the size of a maximal intersecting family).Our methods combine traditional combinatorics with results stemming from the theory of Boolean functions and discrete Fourier analysis.


2000 ◽  
Vol 9 (3) ◽  
pp. 265-276 ◽  
Author(s):  
N. N. KUZJURIN

For any fixed l < k we present families of asymptotically good packings and coverings of the l-subsets of an n-element set by k-subsets, and an algorithm that, given a natural number i, finds the ith k-subset of the family in time and space polynomial in log n.


2001 ◽  
Vol Vol. 4 no. 2 ◽  
Author(s):  
Ján Maňuch

International audience Let X be a two-element set of words over a finite alphabet. If a bi-infinite word possesses two X-factorizations which are not shiftequivalent, then the primitive roots of the words in X are conjugates. Note, that this is a strict sharpening of a defect theorem for bi-infinite words stated in \emphKMP. Moreover, we prove that there is at most one bi-infinite word possessing two different X-factorizations and give a necessary and sufficient conditions on X for the existence of such a word. Finally, we prove that the family of sets X for which such a word exists is parameterizable.


Author(s):  
Kevin P. Balanda

AbstractAssume GCH. Let κ, μ, Σ be cardinals, with κ infinite. Let be a family consisting of λ pairwise almost disjoint subsets of Σ each of size κ, whose union is Σ. In this note it is shown that for each μ with 1 ≤ μ ≤min(λ, Σ), there is a “large” almost disjoint family of μ-sized subsets of Σ, each member of having non-empty intersection with at least μ members of the family .


Sign in / Sign up

Export Citation Format

Share Document